GDL Reference Guide

				GRAPHISOFT®
			

				Visit the GRAPHISOFT website at http://www.graphisoft.com
				for local distributor and product availability information.
			

				GDL Reference Guide
			

				Copyright© 2012 by GRAPHISOFT, all rights reserved.
				Reproduction, paraphrasing or translation without express prior written permission is strictly prohibited.
			

				Trademarks
			

				ArchiCAD® is a registered trademark and PlotMaker, Virtual Building and GDL are trademarks of GRAPHISOFT.
				All other trademarks are the property of their respective holders.
			

Introduction

			This manual is a complete reference to the GRAPHISOFT's proprietary scripting language, GDL (Geometric Description Language).
			The manual is recommended for those users who wish to expand on the possibilities presented by the construction tools and
			object libraries in GRAPHISOFT software. It gives a detailed description of GDL, including syntax definitions, commands, variables, etc.
		

Chapter 1. General Overview

			GDL is a parametric programming language, similar to BASIC. It describes 3D solid objects like
			doors, windows, furniture, structural elements, stairs, and the 2D symbols
			representing them on the floor plan. These objects are called library parts.
		
Starting Out

				The needs of your design,
				your background in programming and your knowledge of descriptive geometry will all probably influence where you start in GDL.
			

				Do not start practicing GDL with complicated objectives in mind.
				Rather, try to learn GDL through experimenting step by step with all of its features to best utilize them to your advantage.
				Follow the expertise level recommendations below.
			

				If you are familiar with a programming language like BASIC, you can get acquainted with GDL by observing existing scripts.
				You can also learn a lot by opening the library parts shipped with your software and taking a look at the 2D and 3D GDL scripts.
				Additionally, you can save floor plan elements in GDL format and see the resulting script.
			

				If you are not familiar with BASIC, but have played with construction blocks, you can still find your way in GDL through practice.
				We advise trying the simplest commands right away and then checking their effect in the 3D window of the library part.
			

				Several books and materials have been published on GDL and object library development.
			
	
						“Object Making with ArchiCAD” is the perfect guide for beginners.
					

	
						“Creating GDL Objects” e-Guide gives a basic overview of the object creation methods.
					

	
						David Nicholson Cole’s “GDL Cookbook” is the most popular course book for entry level and advanced GDL programmers for a long time.
					

	
						A more recent learning material is “GDL Handbook” by Andrew Watson for novice and experienced users as well.
					

	
						“GDL Technical Standards” contains GRAPHISOFT’s official standards for professional library developers;
						this document can be downloaded free of charge from GRAPHISOFT’s website:
						http://www.graphisoft.com/support/developer/documentation/LibraryDevKit.
					

Scripting

				Library Part Structure
			

				Every library part described with GDL has scripts,
				which are lists of the actual GDL commands that construct the 3D shape and the 2D symbol.
				Library parts also have a description for quantity calculations in ArchiCAD.
			

				Master script commands will be executed before each script.
			

				The 2D script contains parametric 2D drawing description.
				The binary 2D data of the library part (content of the 2D symbol window) can be referenced
				using the FRAGMENT2 command.
				If the 2D script is empty, the binary 2D data will be used to display the library part on the floor plan.
			

				The 3D script contains a parametric
				3D model description. The binary 3D data
				(which is generated during an import or export operation) can be referenced using the BINARY command.
			

				The Properties script contains
				components and descriptors used in element, component and zone lists. The binary properties data
				described in the components and descriptors section of the library part can be
				referenced using the BINARYPROP command.
				If the properties script and the master script are empty, the binary properties data will be used during the list process.
			

				The User Interface script allows the user
				to define input pages that can be used to edit the parameter values in place of the normal parameter list.
			

				In the Parameter script, sets of possible values can be defined for the library part parameters.
			

				The parameter set in the Parameters section are used as defaults in the library part settings
				when placing the library part on the plan.
			

				In the Forward Migration script you can define the conversion logic which can convert placed instances of older elements.
			

				In the Backward Migration script you can define a backward conversion to an older version of an element.
			

				The Preview picture is displayed in the library part settings dialog box when browsing the active library.
				It can be referenced by the PICTURE and PICTURE2 commands from the 3D and 2D script.
			
ArchiCAD provides a helpful environment to write GDL scripts, with on-the-fly visualization, syntax and error checking.

				Analyze, Deconstruct and Simplify
			

				No matter how complex, most objects you wish to create can be broken down into building blocks of simple geometric shapes.
				Always start with a simple analysis of the desired object and define all the geometric units that compose it.
				These building blocks can then be translated into the vocabulary of the GDL scripting language.
				If your analysis was accurate, the combination of these entities will form the desired object.
				To make the analysis, you need to have a good perception of space and at least a basic knowledge of descriptive geometry.
			
[image: ../Images/general_windowrepr.png]

				Window representations with different levels of sophistication
			

				To avoid getting discouraged early on in the learning process, start with objects of defined dimensions
				and take them to their simplest but still recognizable form.
				As you become familiar with basic modeling, you can increase the level of sophistication and get closer to the ideal form.
				Ideal does not necessarily mean complicated.
				Depending on the nature of the architectural project, the ideal library part could vary from basic to refined.
				The window on the left in the above illustration fits the style of a design visualization perfectly.
				The window on the right gives a touch of realism and detail which can be used later in the construction documents phase of the project.
			

				Elaboration
			
[image: ../Images/general_deskelab.png]

				Depending on your purpose, your custom parametric objects may vary in elaboration.
				Custom objects for internal studio use may be less refined than the ones for general use or for commercial distribution.
			

				If your symbols have little significance on the floor plan, or if parametric changes do not need to appear in 2D,
				then you can omit parametric 2D scripts.
			

				Even if parametric changes are intended to be present in 2D, it is not absolutely necessary to write a parametric 2D script.
				You can perform parametric modifications in the 3D Script window or use the 3D top view of the modified object as a new symbol
				and save the modified object under a new name.
				Parametric changes to the default values will result in several similar objects derived from the original.
			

				The most complex and sophisticated library parts consist of parametric 3D descriptions with corresponding parametric 2D scripts.
				Any changes in the settings will affect not only the 3D image of the object, but also its floor plan appearance.
			

				Entry Level
			

				These commands are easy to understand and use.
				They require no programming knowledge, yet you can create very effective new objects using only these commands.
			

				Simple Shapes
			

				Shapes are basic geometric units that add up to a complex library part.
				They are the construction blocks of GDL. You place a shape in the 3D space by writing a command in the GDL script.
			
A shape command consists of a keyword that defines the shape type and some numeric values or alphabetic parameters that define its dimensions.
The number of values varies by shape.
In the beginning, you can omit using parameters and work with fixed values only.
You can start with the following shape commands:

				In 3D:
			

				BLOCK,
				CYLIND,
				SPHERE,
				PRISM
			

				In 2D:
			

				LINE2,
				RECT2,
				POLY2,
				CIRCLE2,
				ARC2
			

				Coordinate Transformations
			

				Coordinate transformations are like moving your hand to a certain place before placing a construction block.
				They prepare the position, orientation and scale of the next shape.
			
[image: ../Images/general_blockcordtrans.png]
BLOCK 1, 0.5, 0.5
ADDX 1.5
ROTY 30
BLOCK 1, 0.5, 0.5

				The 3D window of the library part will optionally show you the home (G = global) and the current (L = local) position of the coordinate
				system for any object present.
			
The simplest coordinate transformations are as follows:

				In 3D:
			

				ADDX,
				ADDY,
				ADDZ,
				ROTX,
				ROTY,
				ROTZ
			

				In 2D:
			

				ADD2,
				ROT2
			
The commands starting with ADD will move the next shape, while the ROT commands will turn it around any of its axes.

				Intermediate Level
			

				These commands are a bit more complex, not because they expect you to know programming,
				but simply because they describe more complex shapes or more abstract transformations.
			

				In 3D:
			

				ELLIPS,
				CONE
			

				POLY_,
				LIN_,
				PLANE,
				PLANE_
			

				PRISM_,
				CPRISM_,
				SLAB,
				SLAB_,
				CSLAB_,
				TEXT
			

				In 2D:
			

				HOTSPOT2,
				POLY2_,
				TEXT2,
				FRAGMENT2
			

				These commands usually require more values to be defined than the simple ones.
				Some of them require status values to control the visibility of edges and surfaces.
			

				Coordinate Transformations
			

				In 3D:
			
On top of the entry level transformations

				MULX,
				MULY,
				MULZ,
				ADD,
				MUL,
				ROT
			

				In 2D:
			
On top of the entry level transformations

				MUL2
			
Example:
	
								PRISM 4, 1, 3, 0,
 3, 3,
 -3, 3,
 -3, 0
ADDZ -1
MUL 0.666667, 0.666667, 1
PRISM 4, 1, 3, 0,
 3, 3,
 -3, 3,
 -3, 0
ADDZ -1
MUL 0.666667, 0.666667, 1
PRISM 4, 1, 3, 0,
 3, 3,
 -3, 3,
 -3, 0

								
								[image: ../Images/general_blocksmul.png]

							

				The transformations starting with MUL will rescale the subsequent shapes by distorting circles into ellipses or spheres into ellipsoids.
				If used with negative values, they can be used for mirroring. The commands in the second row affect all three dimensions of space at the same time.
			

				Advanced Level
			
These commands add a new level of complexity either because of their geometric shape, or because they represent GDL as a programming language.

				In 3D:
			
	BPRISM_	BWALL_	CWALL_	XWALL_
	CROOF_	FPRISM_	SPRISM_	
	EXTRUDE	PYRAMID	REVOLVE	RULED
	SWEEP	TUBE	TUBEA	COONS
	MESH	MASS	 	
	LIGHT	PICTURE	 	

				There are shape commands in this group which let you trace a spatial polygon with a base polygon to make smooth curved surfaces.
				Some shapes require material references in their parameter list.
			

				By using cutting planes, polygons and shapes, you can generate complex arbitrary shapes out of simple shapes.
				The corresponding commands are CUTPLANE,
				CUTPOLY,
				CUTPOLYA,
				CUTSHAPE and
				CUTEND.
			

				In 2D:
			

				PICTURE2,
				POLY2_A,
				SPLINE2,
				SPLINE2A
			

				Flow Control and Conditional Statements
			

				FOR - TO - NEXT
			

				DO - WHILE, WHILE - ENDWHILE
			

				REPEAT - UNTIL
			

				IF - THEN - ELSE - ENDIF
			

				GOTO, GOSUB
			

				RETURN, END / EXIT
			

				These commands should be familiar to anyone who has ever programmed a computer,
				but they are basic enough that you can understand them without prior programming experience.
			
They let you make repetitive script parts to place several shapes with little scripting, or let you make decisions based on prior calculations.
	
								FOR i = 1 TO 5
 PRISM_ 8, 0.05,
 -0.5, 0, 15,
 -0.5, -0.15, 15,
 0.5, -0.15, 15,
 0.5, 0, 15,
 0.45, 0, 15,
 0.45, -0.1, 15,
 -0.45, -0.1, 15,
 -0.45, 0, 15
 ADDZ 0.2
NEXT i

								
								[image: ../Images/general_barsflow.png]

							

				Parameters
			

				At this stage of your expertise, you can replace fixed numeric values with variable names. This makes the object more flexible.
				These variables are accessible from the library part’s Settings dialog box while working on the project.
			

				Macro Calls
			

				You are not limited to the standard GDL shapes. Any existing library part may become a GDL shape in its entirety.
				To place it, you simply call (refer to) its name and transfer the required parameters to it, just as with standard shape commands.
			

				Expert Level
			

				By the time you have a good understanding of the features and commands outlined above,
				you will be able to pick up the few remaining commands that you may need from time to time.
			
Note

				The memory capacity of your computer may limit the file length of your GDL scripts,
				the depth of macro calls and the number of transformations.
			

				You will find additional information on the above GDL commands throughout the manual.
				HTML format help files are also available with your software, giving a quick overview of the available commands and their parameter structure.
			

3D Generation

				3D modeling is based on floating point arithmetics, meaning that there is no limit imposed on the geometric size of the model.
				Whatever size it is, it retains the same accuracy down to the smallest details.
			

				The 3D model that you finally see on the screen is composed of geometric primitives.
				These primitives are stored in the memory of your computer in binary format, and the 3D engine generates them according to the floor plan you created.
				The metamorphosis between the architectural floor plan elements and the binary 3D data is called 3D conversion.
			
The primitives are the following:
	
						all the vertices of your building components
					

	
						all the edges linking the vertices
					

	
						all the surface polygons within the edges
					

				Groups of these primitives are kept together as bodies. The bodies make up the 3D model.
				All of the features of 3D visualization - smooth surfaces, cast shadows, glossy or transparent materials - are based on this data structure.
			

				The 3D Space
			

				The 3D model is created in three-dimensional space measured by the x, y and z axes of a master coordinate system whose origin is called the
				global origin.
			

				In Floor Plan view, you can see the global origin in the lower left corner of the worksheet if you open the program without reading a specific document.
				In addition, the global origin defines the zero level of all the stories referred to in a floor plan document.
			

				When you place an object into the design, the floor plan position will define its location along the x and y axes of this master coordinate system.
				The location along the z axis can be set in the Object Settings dialog box or directly adjusted when placed in 3D.
				This location will be the base and the default position of the local coordinate system of the object.
				The shapes described in the script will be positioned with reference to this local coordinate system.
			

				Coordinate Transformations
			

				Every GDL shape is linked to the current position of the local coordinate system. For example, blocks are linked to the origin.
				The length, width and height of the block are always measured in a positive direction along the three axes.
				Thus, the BLOCK command requires only three parameters defining its dimensions along the axes.
			

				How can you generate a shifted and rotated block?
				With the parameter structure of the BLOCK there is no way to do this. It does not have parameters for shift and rotation.
			

				The answer is to move the coordinate system to the correct position before issuing the BLOCK command.
				With the coordinate transformation commands, you can pre-define its position and rotation around the axes.
				These transformations are not applied to the shapes already generated and are only effective on subsequent shapes.
			

				The GDL Interpreter
			

				When a GDL script is executed, the GDL interpreter engine will detect the location, size, rotation angle, user defined parameters
				and the mirrored state of the library part.
				It will then move the local coordinate system to the right position, ready to receive the GDL commands from the script of the library parts.
				Every time a command for a basic shape is read by the interpreter, it will generate the geometric primitives that make up that particular shape.
			

				When the interpreter has finished, the complete binary 3D model will be stored in the memory, and you can perform 3D projections,
				fly-through renderings or sun studies on it.
			

				ArchiCAD contains a pre-compiler and an interpreter for GDL. Interpretation of a GDL script uses the pre-compiled code.
				This feature increases speed of the analysis. If the GDL script is modified, a new code is generated.
			

				Data structures converted from other file formats (e.g., DXF, Zoom, Alias Wavefront) are stored in a binary 3D section of the library parts.
				This section is referenced by the BINARY command from the GDL script.
			

				The GDL Script Analysis
			

				Users have no control over the order in which library parts placed on the floor plan are analyzed.
				The order of GDL script analysis is based on the internal data structure; moreover,
				Undo and Redo operations as well as modifications may influence that order.
				The only exceptions to this rule are special GDL scripts of the active library, whose names begin with
				"MASTER_GDL" or "MASTEREND_GDL".
			

				Scripts whose name begins with "MASTER_GDL" are executed before a 3D conversion, before creating a Section/Elevation,
				before starting a list process and after loading the active library.
			

				Scripts whose name begins with "MASTEREND_GDL" are executed after a 3D conversion sequence, after creating a Section/Elevation,
				when finishing a list process and when the active library is to be changed (Load Libraries, Open a project, New project, Quit).
			

				These scripts are not executed when you edit library parts.
				If your library contains one or more such scripts they will all be executed in an order that is not defined.
			

				MASTER_GDL and MASTEREND_GDL scripts can include attribute definitions, initializations of GDL user global variables,
				3D commands (effective only in the 3D model), value list definitions (see the VALUES command) and GDL extension-specific commands.
				The attributes defined in these scripts will be merged into the current attribute set
				(attributes with same names are not replaced, while attributes originated from GDL and not edited in the program are always replaced).
			

Chapter 2. GDL Syntax

			This chapter presents the basic elements of GDL syntax, including statements, labels, identifiers, variables and parameters. Typographic rules are also explained in detail.
		
Rules of GDL Syntax

				GDL is not case sensitive; uppercase and lowercase letters are not distinguished, except in strings placed between quotation marks.
				The logical end of a GDL script is denoted by an END / EXIT statement or the physical end of the script.
			

Statements

				A GDL program consists of statements.
				A statement can start with a keyword (defining a GDL shape, coordinate transformations or program control flow),
				with a macro name, or with a variable name followed by an '=' sign and an expression.
			

Line

The statements are in lines separated by line-separators (end_of_line characters).

				A comma (,) in the last position indicates that the statement continues on the next line.
				A colon (:) is used for separating GDL statements in a line. After an exclamation mark (!) you can write any comment in the line.
				Blank lines can be inserted into a GDL script with no effect at all. Any number of spaces or tabs can be used between the operands and operators.
				The use of a space or tab is obligatory after statement keywords and macro calls.
			

Label

				Any line can start with a label which is used as a reference for a subsequent statement.
				A label is an integer number or a constant string between quotation marks, followed by a colon (:). A string label is case sensitive.
				Labels are checked for single occurrence. The execution of the program can be continued from any label by using
				a GOTO or GOSUB statement.
			

Characters

The GDL text is composed of the lower and uppercase letters of the English alphabet, any number and the following characters:

				<space> _(underline) ~ ! : , ; . + - * / ^ =
				< > <= >= # () [] { } \ @ & |(vertical bar) " ' ` ´ “ ” ’ ‘ <end_of_line>
			

Strings

				Any string of Unicode characters that is placed between quotation marks (", ', “, ’, `, ´),
				or any string of characters without quotation marks that does not figure in the script as an identifier with a given value
				(macro call, attribute name, file name). Strings without quotation marks will be converted to all caps, so using quotation marks is recommended.
				The maximum length allowed in a string is 255 characters.
				The ArchiCAD user interface - unlike the GDL Engine - isn’t fully Unicode ready yet,
				so in the Library Part Editor you can enter the characters of your current system codepage only.
			
The '\' character has special control values. Its meaning depends on the next character.
	\\	'\' char itself
	\n	new line
	\t	tabulator
	\new line	continue string in next line without a new line
	\others	not correct, results in warning

Example:

"This is a string"
`washbasin 1'-6"*1'-2`
'Do not use different delimiters’

Identifiers

Identifiers are special character strings:
	they are not longer than 255 characters;

	
						they begin with a letter of the alphabet or a '_' or '~'
						character;
					

	
						they consist of letters, numbers and '_' or '~'
						characters;
					

	upper- and lowercase letters are considered identical.

				Identifiers can be GDL keywords, global or local variables or strings (names).
				Keywords and global variable names are determined by the program you’re using GDL in; all other identifiers can be used as variable names.
			

Variables

				GDL programs can handle numeric and string variables (defined by
				their identifiers), numbers and character strings.
			
There are two sets of variables: local and global.

				All identifiers that are not keywords, global variables, attribute names, macro names or file names are considered local variables.
				If left uninitialized (undefined), their value will be 0 (integer). Local variables are stacked with macro calls.
				When returning from a macro call, the interpreter restores their values.
			

				Global variables have reserved names (for the list of global variables see the section called “Global Variables”).
				They are not stacked during macro calls, enabling the user to store special values of the modeling and to simulate return codes from macros.
				The user global variables can be set in any script but they will only be effective in subsequent scripts.
				If you want to make sure that the desired script is analyzed first, set these variables in the MASTER_GDL library part.
				The other global variables can be used in your scripts to communicate with the program.
				By using the "=" command, you can assign a numeric or string value to local and global variables.
			

Parameters

				Identifiers listed in a library part’s parameter list are called parameters. Parameter identifiers must not exceed 31 characters in length.
				And the maximum number of parameters must not exceed 1024.
				Within a script, the same rules apply to parameters as to local variables.
			
Parameters of text-only GDL files are identified by letters A to Z.

Simple Types

Variables, parameters and expressions can be of two simple types: numeric or string.

				Numeric expressions are constant numbers, numeric variables or parameters, functions that return numeric values,
				and any combination of these in operations. Numeric expressions can be integer or real.
				Integer expressions are integer constants, variables or parameters, functions that return integer values,
				and any combination of these in operations which results in integers.
				Real expressions are real constants, variables or parameters, functions that return real values,
				and any combination of these (or integer expressions) in operations which results in reals.
				A numeric expression being an integer or a real is determined during the compilation process and depends only on the constants,
				variables, parameters and the operations used to combine them.
				Real and integer expressions can be used the same way at any place where a numeric expression is required,
				however, in cases where a combination of these may result in precision problems, a compiler warning appears
				(comparison of reals or reals and integers using relational operators '=' or '<>',
				or boolean operators AND, OR, EXOR; IF or GOTO statements with real label expressions).
			

				String expressions are constant strings, string variables or parameters, functions that return strings,
				and any combination of these in operations which result in strings.
			

Derived Types

Variables and parameters can also be arrays, and parameters can be value lists of a simple type.

				Arrays are one- or two-dimensional tables of numeric and/or string values,
				which can be accessed directly by indexes.
			

				Value lists are sets of possible numeric or string values.
				They can be assigned to the parameters in the value list script of the library part or in the MASTER_GDL script,
				and will appear in the parameter list as a pop-up menu.
			

Conventions used in this book

				[aaa]
			
Square brackets mean that the enclosed elements are optional (if they are bold, they must be entered as shown).

				{n}
			
command version number

				...
			
Previous element may be repeated

				|
			
Exclusive or relation between parameters of a command

				variable
			
Any GDL variable name

				prompt
			
Any character string (must not contain quote character)

				bold_string
			

				UPPERCASE_STRING
			

				special characters
			
Must be entered as shown

				other_lowercase_string_in_parameter_list
			
Any GDL expression

Chapter 3. Coordinate Transformations

			This chapter tells you about the types of transformations available in GDL (moving, scaling and rotating the coordinate system)
			and the way they are interpreted and managed.
		

			About Transformations
		

			In GDL, all the geometric elements are linked strictly to the local coordinate system.
			GDL uses a right-handed coordinate system. For example, one corner of a block is in the origin and its sides are in the x-y, x-z and y-z planes.
		

			Placing a geometric element in the desired position requires two steps. First, move the coordinate system to the desired position.
			Second, generate the element. Every movement, rotation or stretching of the coordinate system along or around an axis is called a transformation.
			Transformations are stored in a stack; interpretation starts from the last one backwards.
			Scripts inherit this stack; they can insert new elements onto it but can only delete the locally defined ones.
			It is possible to delete one, more or all of the transformations defined in the current script.
			After returning from a script, the locally defined transformations are removed from the stack.
		
2D Transformations

				These are the equivalents in the 2D space of the ADD,
				MUL and ROTZ 3D transformations.
			
ADD2

				
				ADD2 x, y

				Example:

ADD2 a, b
[image: ../Images/cordtrans_add2.png]

			MUL2

				
				MUL2 x, y

			ROT2

				
				ROT2 alpha

				Example:

ROT2 beta
[image: ../Images/cordtrans_rot2.png]

			
3D Transformations

ADDX

				
				ADDX dx

			ADDY

				
				ADDY dy

			ADDZ

				
				ADDZ dz

			Moves the local coordinate system along the given axis by dx, dy or dz respectively.
ADD

				
				ADD dx, dy, dz

				
					Replaces the sequence ADDX dx: ADDY dy: ADDZ dz.

				
				Example:

ADD a, b, c
[image: ../Images/cordtrans_add.png]

			It has only one entry in the stack, thus it can be deleted with DEL 1.
MULX

				
				MULX mx

			MULY

				
				MULY my

			MULZ

				
				MULZ mz

			Scales the local coordinate system along the given axis. Negative mx, my, mz means simultaneous mirroring.
MUL

				
				MUL mx, my, mz

				
					Replaces the sequence MULX mx: MULY my: MULZ mz. It has only one entry in the stack, thus it can be deleted with DEL 1.

				
			ROTX

				
				ROTX alphax

			ROTY

				
				ROTY alphay

			ROTZ

				
				ROTZ alphaz

			Rotates the local coordinate system around the given axis by alphax, alphay, alphaz degrees respectively, counterclockwise.
Example:

[image: ../Images/cordtrans_rotz.png]
ROTZ beta

ROT

				
				ROT x, y, z, alpha

				
					
						Rotates the local coordinate system around the axis defined by the vector (x, y, z) by alpha degrees, counterclockwise.
						It has only one entry in the stack, thus it can be deleted with DEL 1.
					

				
			XFORM

				
				XFORM a11, a12, a13, a14,
 a21, a22, a23, a24,
 a31, a32, a33, a34

				
					
						Defines a complete transformation matrix. It is mainly used in
						automatic GDL code generation. It has only one entry in the stack.
					

					
						x' = a11 * x + a12 * y + a13 * z + a14
					

					
						y' = a21 * x + a22 * y + a23 * z + a24
					

					
						z' = a31 * x + a32 * y + a33 * z + a34
					

				
				Example:

	
										A=60
B=30
XFORM 2, COS(A), COS(B)*0.6, 0,
 0, SIN(A), SIN(B)*0.6, 0,
 0, 0, 1, 0
BLOCK 1, 1, 1

										
										[image: ../Images/cordtrans_blockxform.png]

									

			
Managing the Transformation Stack

DEL

				
				DEL n [, begin_with]

				
					Deletes n entries from the transformation stack.

					
						If the begin_with parameter is not specified, deletes the previous n entries in the transformation stack.
						The local coordinate system moves back to a previous position.
					

					
						If the begin_with transformation is specified, deletes n entries forward, beginning with the one denoted by begin_with.
						Numbering starts with 1. If the begin_with parameter is specified and n is negative, deletes backward.
					

					
						If fewer transformations were issued in the current script than denoted by the given n number argument,
						then only the issued transformations are deleted.
					

				
			DEL TOP

				
				DEL TOP

				
					Deletes all current transformations in the current script.

				
			NTR

				
				NTR ()

				
					Returns the actual number of transformations.

				
			Example:

[image: ../Images/cordtrans_blocksntr.png]
BLOCK 1, 1, 1
ADDX 2
ADDY 2.5
ADDZ 1.5
ROTX -60
ADDX 1.5
BLOCK 1, 0.5, 2
DEL 1, 1 ! Deletes the ADDX 2 transformation
BLOCK 1, 0.5, 1
DEL 1, NTR() -2 ! Deletes the ADDZ 1.5 transformation
BLOCK 1, 0.5, 2
DEL -2, 3!Deletes the ROTX -60 and ADDY 2.5 transformations
BLOCK 1, 0.5, 2

Chapter 4. 3D Shapes

			
				This chapter covers all the 3D shape creation commands available in GDL,
				from the most basic ones to the generation of complex shapes from polylines.
				Elements for visualization (light sources, pictures) are also presented here, as well as the definition of text to be displayed in 3D.
				Furthermore, the primitives of the internal 3D data structure consisting of nodes, vectors, edges and bodies are discussed in detail,
				followed by the interpretation of binary data and guidelines for using cutting planes.
			
		
Basic Shapes

BLOCK

				
				BLOCK a, b, c

			BRICK

				
				BRICK a, b, c

				
					[image: ../Images/3Dshapes_brick.png]

					
						The first corner of the block is in the local origin and the edges with lengths a, b and c are along the x-, y- and z-axes, respectively.
						Zero values create degenerated blocks (rectangle or line).
					

					
						a >= 0, b >= 0, c >= 0
a + b + c > 0

					
				
			CYLIND

				
				CYLIND h, r

				
					[image: ../Images/3Dshapes_cylind.png]

					Right cylinder, coaxial with the z-axis with a height of h and a radius of r.

					If h=0, a circle is generated in the x-y plane.

					If r=0, a line is generated along the z axis.

				
			SPHERE

				
				SPHERE r

				
					A sphere with its center at the origin and with a radius of r.

					[image: ../Images/3Dshapes_sphere.png]

				
			ELLIPS

				
				ELLIPS h, r

				
					
						Half ellipsoid. Its cross-section in the x-y plane is a circle with a radius of r centered at the origin.
						The length of the half axis along the z-axis is h.
					

				
				Example:
Hemisphere
ELLIPS r, r
[image: ../Images/3Dshapes_ellips.png]

			CONE

				
				CONE h, r1, r2, alpha1, alpha2

				
					[image: ../Images/3Dshapes_cone.png]

					
						Frustum of a cone where alpha1 and alpha2 are the angles of inclination of the end surfaces to the z axis,
						r1 and r2 are the radii of the end-circles and h is the height along the z axis.
					

					If h=0, the values of alpha1 and alpha2 are disregarded and an annulus is generated in the x-y plane.

					alpha1 and alpha2 are in degrees.

					
						0 < alpha1 < 180° and 0 < alpha2 < 180°

					
				
				Example:
A regular cone
CONE h, r, 0, 90, 90

			PRISM

				
				PRISM n, h, x1, y1, ... xn, yn

				
					
						Right prism with its base polygon in the x-y plane
						(see the parameters of the POLY command and the POLY_ command).
						The height along the z-axis is abs(h). Negative h values can also be used. In that case the second base polygon is below the x-y plane.
					

					
						n >= 3

					
					[image: ../Images/3Dshapes_prism.png]

				
			PRISM_

				
				PRISM_ n, h, x1, y1, s1, ... xn, yn, sn

				
					
						Similar to the PRISM command, but any of the horizontal edges and sides can be omitted.
					

					
						n >= 3

					
					
						si:
							status code that allows you to control the visibility of polygon edges and side surfaces.
							You can also define holes and create segments and arcs in the polyline using special constraints.
						

					

					
						See Chapter 7, Status Codes for details.
					

				
				Example 1:
Solid and hollow faces
	
										[image: ../Images/3Dshapes_prism_ex1.png]

										
										[image: ../Images/3Dshapes_prism_ex2.png]

									
	
										PRISM_ 4,1,
 0,0,15,
 1,1,15,
 2,0,15,
 1,3,15

										
										PRISM_ 4,1,
 0,0,7,
 1,1,5,
 2,0,15,
 1,3,15

									

				Example 2:
Holes in the polygon
	
										ROTX 90
PRISM_ 26, 1.2,
 0.3, 0, 15,
 0.3, 0.06, 15,
 0.27, 0.06, 15,
 0.27, 0.21, 15,
 0.25, 0.23, 15,
 -0.25, 0.23, 15,
 -0.27, 0.21, 15,
 -0.27, 0.06, 15,
 -0.3, 0.06, 15,
 -0.3, 0, 15,
 0.3, 0, -1, !End of contour
 0.10, 0.03, 15,
 0.24, 0.03, 15,
 0.24, 0.2, 15,
 0.10, 0.2, 15,
 0.10, 0.03, -1, !End of first hole
 0.07, 0.03, 15,
 0.07, 0.2, 15,
 -0.07, 0.2, 15,
 -0.07, 0.03, 15,
 0.07, 0.03, -1, !End of second hole
 -0.24, 0.03, 15,
 -0.24, 0.2, 15,
 -0.1, 0.2, 15,
 -0.1, 0.03, 15,
 -0.24, 0.03, -1 !End of third hole

										
										[image: ../Images/3Dshapes_prism_ex3.png]

									

				Example 3:
Curved surface
	
										[image: ../Images/3Dshapes_prism_ex4.png]

									
	
										j7 = 0

										
										j7 = 1

									
	
										R=1
H=3
PRISM_ 9, H,
 -R, R, 15,
 COS(180)*R, SIN(180)*R, 15,
 COS(210)*R, SIN(210)*R, 15,
 COS(240)*R, SIN(240)*R, 15,
 COS(270)*R, SIN(270)*R, 15,
 COS(300)*R, SIN(300)*R, 15,
 COS(330)*R, SIN(330)*R, 15,
 COS(360)*R, SIN(360)*R, 15,
 R, R, 15

										
										R=1
H=3
PRISM_ 9, H,
 -R, R, 15,
 COS(180)*R, SIN(180)*R, 64+15,
 COS(210)*R, SIN(210)*R, 64+15,
 COS(240)*R, SIN(240)*R, 64+15,
 COS(270)*R, SIN(270)*R, 64+15,
 COS(300)*R, SIN(300)*R, 64+15,
 COS(330)*R, SIN(330)*R, 64+15,
 COS(360)*R, SIN(360)*R, 64+15,
 R, R, 15

									

			CPRISM_

				
				CPRISM_ top_material, bottom_material, side_material,
 n, h,
 x1, y1, s1, ... xn, yn, sn

				
					
						Extension of the PRISM_ command. The first three parameters are used for the material name/index of the top, bottom and side surfaces.
						The other parameters are the same as above in the PRISM_ command.
					

					
						n >= 3

					
					
						See also the section called “Materials”.
					

					
						si:
							status code that allows you to control the visibility of polygon edges and side surfaces.
							You can also define holes and create segments and arcs in the polyline using special constraints.
						

					

					
						See Chapter 7, Status Codes for details.
					

				
				Example:
Material referencing a predefined material by name, index and global variable
[image: ../Images/3Dshapes_cprism_ex.png]
CPRISM_ "Mtl-Iron", 0, SYMB_MAT,
 13, 0.2,
 0, 0, 15,
 2, 0, 15,
 2, 2, 15,
 0, 2, 15,
 0, 0, -1, !end of the contour
 0.2, 0.2, 15,
 1.8, 0.2, 15,
 1.0, 0.9, 15,
 0.2, 0.2, -1, !end of first hole
 0.2, 1.8, 15,
 1.8, 1.8, 15,
 1.0, 1.1, 15,
 0.2, 1.8, -1 !end of second hole

			CPRISM_{2}

				
				CPRISM_{2} top_material, bottom_material, side_material,
 n, h,
 x1, y1, alpha1, s1, mat1,
 ...,
 xn, yn, alphan, sn, matn

				
					CPRISM_{2} is an extension of the CPRISM_ command with the possibility of defining different angles and materials for each side of the prism.

					The side angle definition is similar to the one of the CROOF_ command.

					
						alphai: the angle between the face belonging to the edge i of the prism and the plane perpendicular to the base.

					

					
						mati: material reference that allows you to control the material of the side surfaces.

					

				
			BPRISM_

				
				BPRISM_ top_material, bottom_material, side_material,
 n, h, radius,
 x1, y1, s1, ... xn, yn, sn

				
					A smooth curved prism, based on the same data structure as the straight CPRISM_ element. The only additional parameter is radius.

					
						Derived from the corresponding CPRISM_ by bending the x-y plane onto a cylinder tangential to that plane.
						Edges along the x axis are transformed to circular arcs; edges along the y axis remain horizontal;
						edges along the z axis will be radial in direction.
					

					
						See the BWALL_ command for details.
					

					
						si:
							status code that allows you to control the visibility of polygon edges and side surfaces.
							You can also define holes and create segments and arcs in the polyline using special constraints.
						

					

					
						See Chapter 7, Status Codes for details.
					

				
				Example:
Curved prisms with the corresponding straight ones
	
										BPRISM_ "Glass", "Glass", "Glass",
 3, 0.4, 1, ! radius = 1
 0, 0, 15,
 5, 0, 15,
 1.3, 2, 15

										
										[image: ../Images/3Dshapes_bprism_ex1.png]

									

	
										BPRISM_ "Concrete", "Concrete", "Concrete",
 17, 0.3, 5,
 0, 7.35, 15,
 0, 2, 15,
 1.95, 0, 15,
 8, 0, 15,
 6.3, 2, 15,
 2, 2, 15,
 4.25, 4, 15,
 8, 4, 15,
 8, 10, 15,
 2.7, 10, 15,
 0, 7.35, -1,
 4, 8.5, 15,
 1.85, 7.05, 15,
 3.95, 5.6, 15,
 6.95, 5.6, 15,
 6.95, 8.5, 15,
 4, 8.5, -1

										
										[image: ../Images/3Dshapes_bprism_ex3.png]

										[image: ../Images/3Dshapes_bprism_ex2.png]

									

			FPRISM_

				
				FPRISM_ top_material, bottom_material, side_material, hill_material,
 n, thickness, angle, hill_height,
 x1, y1, s1,
 ...,
 xn, yn, sn

				
					
						Similar to the PRISM_ command, with the additional hill_material, angle and hill_height parameters
						for forming a ramp on the top.
					

					
						hill_material: the side material of the ramp part.

					

					
						angle: the inclination angle of the ramp side edges.

						Restriction: 0 <= angle < 90.

						
							If angle = 0, the hill side edges seen from an orthogonal view form a quarter circle with the current resolution
							(see the RADIUS command, the RESOL command and the TOLER command).
						

					

					
						hill_height: the height of the ramp. Note that the thickness parameter represents the whole height of the prism.

					

					
						si:
							status code that allows you to control the visibility of polygon edges and side surfaces.
							You can also define holes and create segments and arcs in the polyline using special constraints.
						

					

					
						n >= 3, hill_height < thickness

					
					
						See Chapter 7, Status Codes for details.
					

					[image: ../Images/3Dshapes_fprism_.png]

				
				Example 1:
Prism with curved ramp
[image: ../Images/3Dshapes_fprism_ex1.png]
RESOL 10
FPRISM_ "Roof Tile", "Brick-Red", "Brick-White", "Roof Tile",
 4, 1.5, 0, 1.0, !angle = 0
 0, 0, 15,
 5, 0, 15,
 5, 4, 15,
 0, 4, 15

				Example 2:
Prism with straight ramp
[image: ../Images/3Dshapes_fprism_ex2.png]
FPRISM_ "Roof Tile", "Brick-Red", "Brick-White",
 "Roof Tile",
 10, 2, 45, 1,
 0, 0, 15,
 6, 0, 15,
 6, 5, 15,
 0, 5, 15,
 0, 0, -1,
 1, 2, 15,
 4, 2, 15,
 4, 4, 15,
 1, 4, 15,
 1, 2, -1

			HPRISM_

				
				HPRISM_ top_mat, bottom_mat, side_mat,
 hill_mat,
 n, thickness, angle, hill_height, status,
 x1, y1, s1,
 ...,
 xn, yn, sn

				
					Similar to FPRISM_, with an additional parameter controlling the visibility of the hill edges.

					
						status: controls the visibility of the hill edges:

						0: hill edges are all visible (FPRISM_)

						1: hill edges are invisible

					

				
			SPRISM_

				
				SPRISM_ top_material, bottom_material, side_material,
 n, xb, yb, xe, ye, h, angle,
 x1, y1, s1, ... xn, yn, sn

				
					
						Extension of the CPRISM_ command, with the possibility of setting the upper polygon non-parallel with the x-y plane.
						The upper plane definition is similar to the plane definition of the CROOF_ command.
						The height of the prism is defined at the reference line.
						Upper and lower polygon intersection is forbidden.
					

					[image: ../Images/3Dshapes_sprism_.png]

					
						xb, yb, xe, ye: reference line (vector) starting and end coordinates.

					

					
						angle: rotation angle of the upper polygon around the given oriented reference line in degrees (CCW).

					

					
						si:
							status code that allows you to control the visibility of polygon edges and side surfaces.
							You can also define holes and create segments and arcs in the polyline using special constraints.
						

					

					
						See Chapter 7, Status Codes for details.
					

					Note
All calculated z coordinates of the upper polygon nodes must be positive or 0.

				
				Example:

	
										SPRISM_ 'Grass', 'Earth', 'Earth',
 6,
 0, 0, 11, 6, 2, -10.0,
 0, 0, 15,
 10, 1, 15,
 11, 6, 15,
 5, 7, 15,
 4.5, 5.5, 15,
 1, 6, 15

										
										[image: ../Images/3Dshapes_sprism_ex.png]

									

			SPRISM_{2}

				
				SPRISM_{2} top_material, bottom_material, side_material,
 n,
 xtb, ytb, xte, yte, topz, tangle,
 xbb, ybb, xbe, ybe, bottomz, bangle,
 x1, y1, s1, mat1,
 ...,
 xn, yn, sn, matn

				
					
						Extension of the SPRISM_ command, with the possibility of having an upper and lower polygon non-parallel with the x-y plane.
						The definition of the planes is similar to the plane definition of the CROOF_ command.
						The top and bottom of the prism is defined at the reference line. Upper and lower polygon intersection is forbidden.
					

					
						xtb, ytb, xte, yte: reference line (vector) of the top polygon starting and end coordinates.

					

					
						topz: the 'z' level of the reference line of the top polygon.

					

					
						tangle: rotation angle of the upper polygon around the given oriented reference line in degrees (CCW).

					

					
						xbb, ybb, xbe, ybe: reference line (vector) of the bottom polygon starting and end coordinates.

					

					
						bottomz: the 'z' level of the reference line of the top polygon.

					

					
						bangle: rotation angle of the lower polygon around the given oriented reference line in degrees (CCW).

					

					
						si:
							status code that allows you to control the visibility of polygon edges and side surfaces.
							You can also define holes and create segments and arcs in the polyline using special constraints.
						

					

					
						See Chapter 7, Status Codes for details.
					

					
						mati: material reference that allows you to control the material of the side surfaces.

					

				
				Example:

	
										SPRISM_{2} 'Grass', 'Earth', 'Earth',
 11,
 0, 0, 11, 0, 30, -30.0,
 0, 0, 0, 11, 2, 30.0,
 0, 0, 15, IND (MATERIAL, 'C10'),
 10, 1, 15, IND (MATERIAL, 'C11'),
 11, 6, 15, IND (MATERIAL, 'C12'),
 5, 7, 15, IND (MATERIAL, 'C13'),
 4, 5, 15, IND (MATERIAL, 'C14'),
 1, 6, 15, IND (MATERIAL, 'C10'),
 0, 0, -1, IND (MATERIAL, 'C15'),
 9, 2, 15, IND (MATERIAL, 'C15'),
 10, 5, 15, IND (MATERIAL, 'C15'),
 6, 4, 15, IND (MATERIAL, 'C15'),
 9, 2, -1, IND (MATERIAL, 'C15')

										
										[image: ../Images/3Dshapes_sprism_2_ex.png]

									

			SLAB

				
				SLAB n, h, x1, y1, z1, ... xn, yn, zn

				
					
						Oblique prism. The lateral faces are always perpendicular to the x-y plane.
						Its bases are flat polygons rotated about an axis parallel with the x-y plane.
						Negative h values can also be used. In that case the second base polygon is below the given one.
					

					No check is made as to whether the points are really on a plane. Apices not lying on a plane will result in strange shadings/ renderings.

					
						n >= 3

					
					[image: ../Images/3Dshapes_slab.png]

				
			SLAB_

				
				SLAB_ n, h, x1, y1, z1, s1, ... xn, yn, zn, sn

				
					
						Similar to the SLAB command, but any of the edges and faces of the side polygons can be omitted.
						This statement is an analogy of the PRISM_ command.
					

					
						si:
							status code that allows you to control the visibility of polygon edges and side surfaces.
							You can also define holes and create segments and arcs in the polyline using special constraints.
						

					

					
						See Chapter 7, Status Codes for details.
					

				
			CSLAB_

				
				CSLAB_ top_material, bottom_material, side_material,
 n, h,
 x1, y1, z1, s1, ... xn, yn, zn, sn

				
					
						Extension of the SLAB_ command; the first three parameters are used for the material name/index of the top, bottom and side surfaces.
						The other parameters are the same as above in the SLAB_ command.
					

					
						si:
							status code that allows you to control the visibility of polygon edges and side surfaces.
							You can also define holes and create segments and arcs in the polyline using special constraints.
						

					

					
						See Chapter 7, Status Codes for details.
					

				
			CWALL_

				
				CWALL_ left_material, right_material, side_material,
 height, x1, x2, x3, x4, t,
 mask1, mask2, mask3, mask4,
 n,
 x_start1, y_low1, x_end1, y_high1, frame_shown1,
 ...,
 x_startn, y_lown, x_endn, y_highn, frame_shownn,
 m,
 a1, b1, c1, d1,
 ...,
 am, bm, cm, dm

				
					
						Left_material, right_material, side_material: Material names/indices for the left, right and side surfaces. (The left and right sides of the wall follow the x axis.)

					

					[image: ../Images/3Dshapes_cwall_.png]

					The reference line of the wall is always transformed to coincide with the x axis. The sides of the wall are in the x-z plane.

					
						height: The height of the wall relative to its base.

					

					
						x1, x2, x3, x4:
							The projected endpoints of the wall lying on the x-y plane as seen below.
							If the wall stands on its own, then x1 = x4 = 0, x2 = x3 = the length of the wall.
						

					

					
						t: the thickness of the wall.

						t < 0: if the body of the wall is to the right of the x axis,

						t > 0: if the body of the wall is to the left of the x axis,

						t = 0: if the wall is represented by a polygon and frames are generated around the holes.

					

					[image: ../Images/3Dshapes_cwall_thickness.png]

					
						mask1, mask2, mask3, mask4:
							Control the visibility of edges and side polygons.
						
mask1, mask2, mask3, mask4 = j1 + 2*j2 + 4*j3 + 8*j4, where each j can be 0 or 1.
	

						The j1, j2, j3, j4 numbers represent whether the vertices and the side are present (1) or omitted (0).

						
						
						
						
					

					[image: ../Images/3Dshapes_cwall_mask.png]

					
						n: the number of openings in the wall.

					

					
						x_starti, y_lowi, x_endi, y_highi: coordinates of the openings as shown below.

					

					[image: ../Images/3Dshapes_cwall_openings.png]

					
						frame_showni:

						1: if the edges of the hole are visible,

						0: if the edges of the hole are invisible,

						< 0:
							control the visibility of each of the opening’s edges separately: frame_showni = -(1*j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8), where j1, j2... j8 can be either 0 or 1.
							The numbers j1 to j4 control the visibility of the edges of the hole on the left-hand side of the wall surface,
							while j5 to j8 affect the edges on the right-hand side, as shown on the illustration below.
						

					

					[image: ../Images/3Dshapes_cwall_frameshown.png]

					An edge that is perpendicular to the surface of the wall is visible if there are visible edges drawn from both of its endpoints.

					
						m: the number of cutting planes.

					

					
						ai, bi, ci, di:
							coefficients of the equation defining the cutting plane [ai*x + bi*y + ci*z = di].
							Parts on the positive side of the cutting plane (i.e., ai*x + bi*y + ci*z > di) will be cut and removed
						

					

					[image: ../Images/3Dshapes_cwall_cutting.png]

				
			BWALL_

				
				BWALL_ left_material, right_material, side_material,
 height, x1, x2, x3, x4, t, radius,
 mask1, mask2, mask3, mask4,
 n,
 x_start1, y_low1, x_end1, y_high1, frame_shown1,
 ...,
 x_startn, y_lown, x_endn, y_highn, frame_shownn,
 m,
 a1, b1, c1, d1,
 ...,
 am, bm, cm, dm

				
					
						A smooth curved wall based on the same data structure as the straight wall CWALL_ element. The only additional parameter is radius.
						Derived from the corresponding CWALL_ by bending the x-z plane onto a cylinder tangential to that plane.
						Edges along the x axis are transformed to circular arcs, edges along the y axis will be radial in direction, and vertical edges remain vertical.
						The curvature is approximated by a number of segments set by the current resolution
						(see the RADIUS command, the RESOL command and the TOLER command).
					

					
						See also the CWALL_ command for details.
					

				
				Example 1:
a BWALL_ and the corresponding CWALL_
	
										[image: ../Images/3Dshapes_bwall_.png]

										
										[image: ../Images/3Dshapes_bwall_components.png]

									

	
										[image: ../Images/3Dshapes_bwall_ex1_1.png]

										
										[image: ../Images/3Dshapes_bwall_ex1_2.png]

									

				Example 2:

	
										ROTZ -60
BWALL_ 1, 1, 1,
 4, 0, 6, 6, 0,
 0.3, 2,
 15, 15, 15, 15,
 5,
 1, 1, 3.8, 2.5, -255,
 1.8, 0, 3, 2.5, -255,
 4.1, 1, 4.5, 1.4, -255,
 4.1, 1.55, 4.5, 1.95,-255,
 4.1, 2.1, 4.5, 2.5, -255,
 1, 0, -0.25, 1, 3

										
										[image: ../Images/3Dshapes_bwall_ex2.png]

									

			XWALL_

				
				XWALL_ left_material, right_material, vertical_material, horizontal_material,
 height, x1, x2, x3, x4,
 y1, y2, y3, y4,
 t, radius,
 log_height, log_offset,
 mask1, mask2, mask3, mask4,
 n,
 x_start1, y_low1, x_end1, y_high1,
 frame_shown1,
 ...,
 x_startn, y_lown, x_endn, y_highn,
 frame_shownn,
 m,
 a1, b1, c1, d1,
 ...,
 am, bm, cm, dm,
 status

				
					Extended wall definition based on the same data structure as the BWALL_ element.

					
						vertical_material, horizontal_material: name or index of the vertical/horizontal side materials.

					

					
						y1, y2, y3, y4: the projected endpoints of the wall lying in the x-y plane as seen below.

					

					[image: ../Images/3Dshapes_xwall_projection.png]

					
						log_height, log_offset: additional parameters allowing you to compose a wall from logs. Effective only for straight walls.

					

					[image: ../Images/3Dshapes_xwall_logs.png]

					
						status: controls the behavior of log walls
status = j1 + 2*j2 + 4*j3 + 32*j6 + 64*j7 + 128*j8 + 256*j9, where each j can be 0 or 1.
	

						j1: apply right side material on horizontal edges,

						j2: apply left side material on horizontal edges,

						j3: start with half log,

						j6: align texture to wall edges,

						j7: double radius on bended side,

						j8: square log on the right side,

						j9: square log on the left side.

					

				
				Example:

[image: ../Images/3Dshapes_xwall_ex.png]
XWALL_ "Surf-White", "Surf-White", "Surf-White", "Surf-White",
 3.0,
 0.0, 4.0, 4.0, 0.0,
 0.0, 0.0, 0.3, 1.2,
 1.2, 0.0,
 0.0, 0.0,
 15, 15, 15, 15,
 3,
 0.25, 0.0, 1.25, 2.5, -255,
 1.25, 1.5, 2.25, 2.5, -255,
 2.25, 0.5, 3.25, 2.5, -255, 0

			XWALL_{2}

				
				XWALL_{2} left_material, right_material, vertical_material, horizontal_material,
 height, x1, x2, x3, x4,
 y1, y2, y3, y4,
 t, radius,
 log_height, log_offset,
 mask1, mask2, mask3, mask4,
 n,
 x_start1, y_low1, x_end1, y_high1,
 sill_depth1, frame_shown1,
 ...,
 x_startn, y_lown, x_endn, y_highn,
 sill_depthn, frame_shownn,
 m,
 a1, b1, c1, d1,
 ...,
 am, bm, cm, dm,
 status

				
					Extended wall definition based on the same data structure as the XWALL_ element.

					
						silldepthi:
							logical depth of the opening sill. If the j9 bit of the frame_showni parameter is set,
							the wall side materials wraps the hole polygons, silldepthi defining the separator line between them.
						

					

					
						frame_showni:

						1: if the edges of the hole are visible,

						0: if the edges of the hole are invisible,

						< 0:
							control the visibility of each of the opening’s edges separately:
							frame_showni = -(1*j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8 + 256*j9 + 512*j10), where j1, j2... j10 can be either 0 or 1.
							There are two additional values to control the material wrapping.
							The meaning of the j1, j2 ... j8 values are the same as at the CWALL_ and XWALL_ commands.
							The j9 value controls the material of the hole polygons. If j9 is 1, the hole inherits the side materials of the wall.
							The j10 value controls the form of the separator line between the hole materials on the upper and lower polygons of the hole in case of a bent wall.
							If the j10 value is 1, the separator line will be straight, otherwise curved.
						

					

				
				Example:

[image: ../Images/3Dshapes_xwall_2_ex.png]
ROTZ 90
xWALL_{2} "C13", "C11", "C12", "C12",
 2, 0, 4, 4, 0,
 0, 0, 1, 1,
 1, 0,
 0, 0,
 15, 15, 15, 15,
 1,
 1, 0.9, 3, 2.1, 0.3, -(255 + 256),
 0,
 0
DEL 1
ADDX 2
xWALL_{2} "C13", "C11", "C12", "C12",
 2, 0, 2 * PI, 2 * PI, 0,
 0, 0, 1, 1,
 0, 0,
 15, 15, 15, 15,
 1,
 1.6, 0.9, 4.6, 2.1, 0.3, -(255 + 256),
 0,
 0
ADDX 4
xWALL_{2} "C13", "C11", "C12", "C12",
 2, 0, 2 * PI, 2 * PI, 0,
 0, 0, 1, 1,
 1, 2,
 0, 0,
 15, 15, 15, 15,
 1,
 1.6, 0.9, 4.6, 2.1, 0.3, -(255 + 256 + 512),
 0,
 0

			BEAM

				
				BEAM left_material, right_material, vertical_material, top_material, bottom_material,
 height,
 x1, x2, x3, x4,
 y1, y2, y3, y4, t,
 mask1, mask2, mask3, mask4

				
					Beam definition. Parameters are similar to those of the XWALL_ element.

					
						top_material, bottom_material: top and bottom materials.

					

				
				Example:

[image: ../Images/3Dshapes_beam_ex.png]
BEAM 1, 1, 1, 1, 1,
 0.3,
 0.0, 7.0, 7.0, 0.0,
 0.0, 0.0, 0.1, 0.1, 0.5,
 15, 15, 15, 15

			CROOF_

				
				CROOF_ top_material, bottom_material, side_material,
 n, xb, yb, xe, ye, height, angle, thickness,
 x1, y1, alpha1, s1,
 ...,
 xn, yn, alphan, sn

				
					A sloped roof pitch with custom angle ridges.

					
						top_material, bottom_material, side_material: name/index of the top, bottom and side material.

					

					
						n: the number of nodes in the roof polygon.

					

					
						xb, yb, xe, ye: reference line (vector).

					

					
						height: the height of the roof at the reference line (lower surface).

					

					
						angle: the rotation angle of the roof plane around the given oriented reference line in degrees (CCW).

					

					
						thickness: the thickness of the roof measured perpendicularly to the plane of the roof.

					

					
						xi, yi: the coordinates of the nodes of the roof’s lower polygon.

					

					
						alphai:
							the angle between the face belonging to the edge i of the roof and the plane perpendicular to the roof plane, -90° < alphai < 90°.
							Looking in the direction of the edge of the properly oriented roof polygon, the CCW rotation angle is positive.
							The edges of the roof polygon are oriented properly if, in top view, the contour is sequenced CCW and the holes are sequenced CW.
						

					

					
						si:
							status code that allows you to control the visibility of polygon edges and side surfaces.
							You can also define holes and create segments and arcs in the polyline using special constraints.
						

					

					[image: ../Images/3Dshapes_croof_.png]

					
						See Chapter 7, Status Codes for details.
					

					
						n >= 3

					
				
				Example 1:

[image: ../Images/3Dshapes_croof_ex1.png]
CROOF_ 1, 1, 1, ! materials
 9,
 0, 0,
 1, 0, ! reference line (xb,yb)(xe,ye)
 0.0, ! height
 -30, ! angle
 2.5, ! thickness
 0, 0, -60, 15,
 10, 0, 0, 15,
 10, 20, -30, 15,
 0, 20, 0, 15,
 0, 0, 0, -1,
 2, 5, 0, 15,
 8, 5, 0, 15,
 5, 15, 0, 15,
 2, 5, 0, -1

				Example 2:

	
										L=0.25
r=(0.6^2+L^2)/(2*L)
a=ASN(0.6/r)
CROOF_ "Roof Tile", "Pine", "Pine",
 16, 2, 0, 0,
 0, 0, 45, -0.2*SQR(2),
 0, 0, 0, 15,
 3.5, 0, 0, 15,
 3.5, 3, -45, 15,
 0, 3, 0, 15,
 0, 0, 0, -1,
 0.65, 1, -45, 15,
 1.85, 1, 0, 15,
 1.85, 2.4-L, 0, 13,
 1.25, 2.4-r, 0, 900,
 0, 2*a, 0, 4015,
 0.65, 1, 0, -1,
 2.5, 2, 45, 15,
 3, 2, 0, 15,
 3, 2.5, -45, 15,
 2.5, 2.5, 0, 15,
 2.5, 2, 0, -1

										
										[image: ../Images/3Dshapes_croof_ex2.png]

									

			CROOF_{2}

				
				CROOF_{2} top_material, bottom_material, side_material,
 n, xb, yb, xe, ye, height, angle thickness,
 x1, y1, alpha1, s1, mat1,
 ...
 xn, yn, alphan, sn, matn

				
					Extension of the CROOF_ command with the possibility of defining different materials for the sides.

					
						mati: material reference that allows you to control the material of the side surfaces.

					

				
			MESH

				
				MESH a, b, m, n, mask,
 z11, z12, ... z1m,
 z21, z22, ... z2m,
 ...
 zn1, zn2, ... znm

				
					
						A simple smooth mesh based on a rectangle with an equidistant net.
						The sides of the base rectangle are a and b; the m and n points are along the x and y axes respectively; zij is the height of the node.
					

					
						Masking:
					

					[image: ../Images/3Dshapes_masking.png]

					
						mask:
mask = j1 + 4*j3 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
	

						j1: base surface is present,

						j3: side surfaces are present,

						j5: base and side edges are visible,

						j6: top edges are visible,

						j7: top edges are visible, top surface is not smooth.

					

					
						m >= 2, n >= 2

					
				
				Example 1:

[image: ../Images/3Dshapes_mesh_ex.png]
MESH 50, 30, 5, 6, 1+4+16+32+64,
 2, 4, 6, 7, 8,
 10, 3, 4, 5, 6,
 7, 9, 5, 5, 7,
 8, 10, 9, 4, 5,
 6, 7, 9, 8, 2,
 4, 5, 6, 8, 6

				Example 2:

[image: ../Images/3Dshapes_mesh_ex2.png]
MESH 90, 100, 12, 8, 1+4+16+32+64,
 17,16,15,14,13,12,11,10,10,10,10, 9,
 16,14,13,11,10, 9, 9, 9,10,10,12,10,
 16,14,12,11, 5, 5, 5, 5, 5,11,12,11,
 16,14,12,11, 5, 5, 5, 5, 5,11,12,12,
 16,14,12,12, 5, 5, 5, 5, 5,11,12,12,
 16,14,12,12, 5, 5, 5, 5, 5,11,13,14,
 17,17,15,13,12,12,12,12,12,12,15,15,
 17,17,15,13,12,12,12,12,13,13,16,16

			ARMC

				
				ARMC r1, r2, l, h, d, alpha

				
					[image: ../Images/3Dshapes_armc.png]

					
						A piece of tube starting from another tube; parameters according to the figure (penetration curves are also calculated and drawn).
						The alpha value is in degrees.
					

					
						r1 >= r2 + d
r1 <= l*sin(alpha) - r2*cos(alpha)

					
				
				Example:

	
										ROTY 90
CYLIND 10,1
ADDZ 6
ARMC 1, 0.9, 3, 0, 0, 45
ADDZ -1
ROTZ -90
ARMC 1, 0.75, 3, 0, 0, 90
ADDZ -1
ROTZ -90
ARMC 1, 0.6, 3, 0, 0, 135

										
										[image: ../Images/3Dshapes_armc_ex.png]

									

			ARME

				
				ARME l, r1, r2, h, d

				
					[image: ../Images/3Dshapes_arme.png]

					
						A piece of tube starting from an ellipsoid in the y-z plane;
						parameters according to the figure (penetration lines are also calculated and drawn).
					

					
						r1 >= r2+d
l >= h*sqrt(1-(r2-d)2/r12)

					
				
				Example:

	
										ELLIPS 3,4
FOR i=1 TO 6
 ARME 6,4,0.5,3,3.7-0.2*i
 ROTZ 30
NEXT i

										
										[image: ../Images/3Dshapes_arme_ex1.png]

									

			ELBOW

				
				ELBOW r1, alpha, r2

				
					
						A segmented elbow in the x-z plane. The radius of the arc is r1, the angle is alpha and the radius of the tube segment is r2.
						The alpha value is in degrees.
					

					
						r1 > r2

					
					[image: ../Images/3Dshapes_elbow.png]

				
				Example:

	
										ROTY 90
ELBOW 2.5, 180, 1
ADDZ -4
CYLIND 4, 1
ROTZ -90
MULZ -1
ELBOW 5, 180, 1
DEL 1
ADDX 10
CYLIND 4, 1
ADDZ 4
ROTZ 90
ELBOW 2.5, 180,1

										
										[image: ../Images/3Dshapes_elbow_ex.png]

									

			
Planar Shapes in 3D

				The drawing elements presented in this section can be used in 3D scripts,
				allowing you to define points, lines, arcs, circles and planar polygons in the three-dimensional space.
			
HOTSPOT

				
				HOTSPOT x, y, z [, unID [, paramReference, flags] [, displayParam]]

				
					A 3D hotspot in the point (x, y, z).

					
						unID: the unique identifier of the hotspot in the 3D script. It is useful if you have a variable number of hotspots.

					

					
						paramReference: parameter that can be edited by this hotspot using the graphical hotspot based parameter editing method.

					

					
						displayParam: parameter to display in the information palette when editing the paramRefrence parameter. Members of arrays can be passed as well.

					

					
						See Chapter 6, Graphical Editing Using Hotspots for using HOTSPOT.
					

				
			HOTLINE

				
				HOTLINE x1, y1, z1, x2, y2, z2, unID

				
					A status line segment between the points P1 (x1,y1,z1) and P2 (x2,y2,z2).

				
			HOTARC

				
				HOTARC r, alpha, beta, unID

				
					A status arc in the x-y plane with its center at the origin from angle alpha to beta with a radius of r.

					Alpha and beta are in degrees.

				
			LIN_

				
				LIN_ x1, y1, z1, x2, y2, z2

				
					A line segment between the points P1 (x1,y1,z1) and P2 (x2,y2,z2).

				
			RECT

				
				RECT a, b

				
					[image: ../Images/3Dshapes_rect.png]

					A rectangle in the x-y plane with sides a and b.

					
						a >= 0, b >= 0

					
				
			POLY

				
				POLY n, x1, y1, ... xn, yn

				
					[image: ../Images/3Dshapes_poly.png]

					A polygon with n edges in the x-y plane. The coordinates of nodei are (xi, yi, 0).

					
						n >= 3

					
				
			POLY_

				
				POLY_ n, x1, y1, s1, ... xn, yn, sn

				
					Similar to the normal POLY statement, but any of the edges can be omitted.

					
						si:
							status code that allows you to control the visibility of polygon edges and side surfaces.
							You can also define holes and create segments and arcs in the polyline using special constraints.
						

						si = 0: the edge starting from the (xi,yi) apex will be omitted,

						si = 1: the edge will be shown,

						si = -1: is used to define holes directly.

					

					Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

					
						See the section called “Additional Status Codes” for details.
					

						
										[image: ../Images/3Dshapes_poly_add_stat1.png]

										
										[image: ../Images/3Dshapes_poly_add_stat2.png]

									

					
						n >= 3

					
				
			PLANE

				
				PLANE n, x1, y1, z1, ... xn, yn, zn

				
					
						A polygon with n edges on an arbitrary plane. The coordinates of nodei are (xi, yi, zi).
						The polygon must be planar in order to get a correct shading/rendering result, but the interpreter does not check this condition.
					

					
						n >= 3

					
				
			PLANE_

				
				PLANE_ n, x1, y1, z1, s1, ... xn, yn, zn, sn

				
					
						Similar to the PLANE command,
						but any of the edges can be omitted as in the POLY_ command.
					

					Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

					
						See the section called “Additional Status Codes”.
					

					
						n >= 3

					
				
			CIRCLE

				
				CIRCLE r

				
					A circle in the x-y plane with its center at the origin and with a radius of r.

					[image: ../Images/3Dshapes_circle.png]

				
			ARC

				
				ARC r, alpha, beta

				
					[image: ../Images/3Dshapes_arc.png]

					
						An arc (in Wireframe mode) or sector (in other modes) in the x-y plane with its center at the origin from angle alpha to beta with a radius of r.
						alpha and beta are in degrees.
					

				
			
Shapes Generated from Polylines

				These elements let you create complex 3D shapes using a polyline and a built-in rule.
				You can rotate, project or translate the given polyline.
				The resulting bodies are a generalization of some previously described elements like
				PRISM_ and CYLIND.
			

				Shapes generated from a single polyline:
			
	EXTRUDE

	PYRAMID

	REVOLVE

				Shapes generated from two polylines:
			
	RULED

	SWEEP

	TUBE

	TUBEA

				The first polyline is always in the x-y plane. Points are determined by two coordinates; the third value is the status (see below).
				The second polyline (for RULED, SWEEP, TUBE and TUBEA) is a space curve. Apices are determined by three coordinate values.
			

				Shape generated from four polylines:
			
	COONS

				Shape generated from any number of polylines:
			
	MASS

				General restrictions for polylines
			
	Adjacent vertices must not be coincident (except RULED).

	The polyline must not intersect itself (this is not checked by the program, but hidden line removal and rendering will be incorrect).

	The polylines may be either open or closed. In the latter case, the first node must be repeated after the last one of the contour.

				Masking
			

				Mask values are used to show or hide characteristic surfaces and/or edges of the 3D shape.
				The mask values are specific to each element and you can find a more detailed description in their corresponding sections/chapters.
			

				mask:
mask = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
	

				j1, j2, j3, j4 represent whether the surfaces are present (1) or omitted (0).

				j5, j6, j7 represent whether the edges are visible (1) or invisible (0).

				j1: base surface.

				j2: top surface.

				j3: side surface.

				j4: other side surface.

				j5: base edges.

				j6: top edges.

				j7: cross-section/surface edges are visible, surface is not smooth.

				To enable all faces and edges, set mask value to 127.

			

				Status
			
Status values are used to state whether a given point of the polyline will leave a sharp trace of its rotation path behind.
0: latitudinal arcs/lateral edges starting from the node are all visible.
1: latitudinal arcs/lateral edges starting from the node are used only for showing the contour.

				-1: for EXTRUDE only: it marks the end of the enclosing polygon or a hole,
				and means that the next node will be the first node of another hole.
			
Additional status codes allow you to create segments and arcs in the polyline using special constraints.

				See the section called “Additional Status Codes” for details.
			
To create a smooth 3D shape, set all status values to 1. Use status = 0 to create a ridge.
Other values are reserved for future enhancements.
EXTRUDE

				
				EXTRUDE n, dx, dy, dz, mask,
 x1, y1, s1,
 ...,
 xn, yn, sn

				
					[image: ../Images/3Dshapes_extrude.png]

					General prism using a polyline base in the x-y plane.

					
						The displacement vector between bases is (dx, dy, dz).
						This is a generalization of the PRISM command and the SLAB command.
						The base polyline is not necessarily closed, as the lateral edges are not always perpendicular to the x-y plane.
						The base polyline may include holes, just like PRISM_. It is possible to control the visibility of the contour edges.
					

					
						n: the number of polyline nodes.

					

					
						mask:
							controls the existence of the bottom, top and (in case of an open polyline) side polygon.
						
mask = j1 + 2*j2 + 4*j3 + 16*j5 + 32*j6 + 64*j7 + 128*j8, where each j can be 0 or 1.
	

						j1: base surface is present,

						j2: top surface is present,

						j3: side (closing) surface is present,

						j5: base edges are visible,

						j6: top edges are visible.

						j7: cross-section edges are visible, surface is articulated,

						j8: cross-section edges are sharp, the surface smoothing will stop here in OpenGL and rendering.

					

					
						si:
							status of the lateral edges or marks the end of the polygon or of a hole.
							You can also define arcs and segments in the polyline using additional status code values:
						

						0: lateral edge starting from the node is visible,

						1: lateral edges starting from the node are used for showing the contour,

						-1: marks the end of the enclosing polygon or a hole, and means that the next node will be the first vertex of another hole.

					

					Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

					
						See the section called “Additional Status Codes” for details.
					

					
						n > 2

					
				
				Example 1:

	
										EXTRUDE 14, 1, 1, 4, 1+2+4+16+32,
 0, 0, 0,
 1, -3, 0,
 2, -2, 1,
 3, -4, 0,
 4, -2, 1,
 5, -3, 0,
 6, 0, 0,
 3, 4, 0,
 0, 0, -1,
 2, 0, 0,
 3, 2, 0,
 4, 0, 0,
 3, -2, 0,
 2, 0, -1

										
										[image: ../Images/3Dshapes_extrude_ex1.png]

									

				Example 2:

	
										A=5: B=5: R=2: S=1: C=R-S : D=A-R : E=B-R
EXTRUDE 28, -1, 0, 4, 1+2+4+16+32,
 0, 0, 0,
 D+R*sin(0), R-R*cos(0), 1,
 D+R*sin(15), R-R*cos(15), 1,
 D+R*sin(30), R-R*cos(30), 1,
 D+R*sin(45), R-R*cos(45), 1,
 D+R*sin(60), R-R*cos(60), 1,
 D+R*sin(75), R-R*cos(75), 1,
 D+R*sin(90), R-R*cos(90), 1,
 A, B, 0,
 0, B, 0,
 0, 0, -1,
 C, C, 0,
 D+S*sin(0), R-S*cos(0), 1,
 D+S*sin(15), R-S*cos(15), 1,
 D+S*sin(30), R-S*cos(30), 1,
 D+S*sin(45), R-S*cos(45), 1,
 D+S*sin(60), R-S*cos(60), 1,
 D+S*sin(75), R-S*cos(75), 1,
 D+S*sin(90), R-S*cos(90), 1,
 A-C,B-C,0,
 R-S*cos(90), E+S*sin(90), 1,
 R-S*cos(75), E+S*sin(75), 1,
 R-S*cos(60), E+S*sin(60), 1,
 R-S*cos(45), E+S*sin(45), 1,
 R-S*cos(30), E+S*sin(30), 1,
 R-S*cos(15), E+S*sin(15), 1,
 R-S*cos(0), E+S*sin(0), 1,
 C, C, -1

										
										[image: ../Images/3Dshapes_extrude_ex2.png]

									

			PYRAMID

				
				PYRAMID n, h, mask, x1, y1, s1, ... xn, yn, sn

				
					[image: ../Images/3Dshapes_pyramid.png]

					Pyramid based on a polyline in the x-y plane. The peak of the pyramid is located at (0, 0, h).

					
						n: number of polyline nodes.

					

					
						mask:
							controls the existence of the bottom and (in the case of an open polyline) side polygon.
						
mask = j1 + 4*j3 + 16*j5, where each j can be 0 or 1.
	

						j1: base surface is present,

						j3: side (closing) surface is present,

						j5: base edges are visible.

					

					
						si: status of the lateral edges.

						0: lateral edges starting from the node are all visible,

						1: lateral edges starting from the node are used for showing the contour.

					

					Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

					
						See the section called “Additional Status Codes” for details.
					

					
						h > 0 and n > 2

					
				
				Example:

	
										PYRAMID 4, 1.5, 1+4+16,
 -2, -2, 0,
 -2, 2, 0,
 2, 2, 0,
 2, -2, 0
PYRAMID 4, 4, 21,
 -1, -1, 0,
 1, -1, 0,
 1, 1, 0,
 -1, 1, 0
for i = 1 to 4 ! four peaks
 ADD -1.4, -1.4, 0
 PYRAMID 4, 1.5, 21,
 -0.25, -0.25, 0,
 0.25, -0.25, 0,
 0.25, 0.25, 0,
 -0.25, 0.25, 0
 DEL 1
 ROTZ 90
next i
del 4

										
										[image: ../Images/3Dshapes_pyramid_ex.png]

									

			REVOLVE

				
				REVOLVE n, alpha, mask, x1, y1, s1, ... xn, yn, sn

				
					[image: ../Images/3Dshapes_revolve.png]

					Surface generated by rotating a polyline defined in the x-y plane around the x axis. The profile polyline cannot contain holes.

					
						n: number of polyline nodes.

					

					
						alpha: rotation angle in degrees

					

					
						mask:
							controls the existence of the bottom, top and (in the case of alpha < 360°) side polygons.
						
mask = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8, where each j can be 0 or 1.
	

						j1: closing disc at first point is present,

						j2: closing disc at last point is present,

						j3: base closing side (in profile plane) is present,

						j4: end closing side (in revolved plane) is present,

						j5: base edges (in profile plane) are visible,

						j6: end edges (in revolved plane) are visible,

						j7: cross-section edges are visible, surface is articulated,

						j8: cross-section edges are sharp, the surface smoothing will stop here in OpenGL and rendering.

					

					
						si: status of the latitudinal arcs.

						0: latitudinal arcs starting from the node are all visible,

						1: latitudinal arcs starting from the node are used for showing the contour,

						2:
							when using ArchiCAD or Z-buffer Rendering Engine and setting Smooth Surfaces,
							the latitudinal edge belonging to this point defines a break. This solution is equivalent to the definition of additional nodes.
							The calculation is performed by the compiler. With other rendering methods, it has the same effect as using 0.
						

					

					Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

					
						See the section called “Additional Status Codes” for details.
					

					
						n >= 2
yi >= 0.0
yi = 0.0 and yi+1 = 0.0 cannot stand at the same time
(i.e., the y value of two neighboring nodes cannot be zero at the same time).

					
				
			REVOLVE{2}

				
				REVOLVE{2} n, alphaOffset, alpha, mask, sideMat,
 x1, y1, s1, mat1, ... xn, yn, sn, matn

				
					
						Advanced version of REVOLVE. The profile polygon will always be closed and may have holes.
						The start angle and the face materials are controllable.
					

					
						alphaOffset: rotation start angle.

					

					
						alpha: rotation angle length in degrees, may be negative.

					

					
						mask:
							controls the existence of the bottom, top and (in the case of alpha < 360°) side polygons.
						
mask = 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8, where each j can be 0 or 1.
	

						j3: base closing side (in profile plane) is present,

						j4: end closing side (in revolved plane) is present,

						j5: base edges (in profile plane) are visible,

						j6: end edges (in revolved plane) are visible,

						j7: cross-section edges are visible, surface is articulated,

						j8: cross-section edges are sharp, the surface smoothing will stop here in OpenGL and rendering.

					

					
						sideMat: material of the closing faces.

					

					
						mati: material of the face generated from the i-th edge.

					

				
				Example 1:

	
										[image: ../Images/3Dshapes_revolve_ex1.png]

										
										[image: ../Images/3Dshapes_revolve_ex2.png]

										
										[image: ../Images/3Dshapes_revolve_ex3.png]

									

ROTY -90
REVOLVE 22, 360, 1+64,
 0, 1.982, 0,
 0.093, 2, 0,
 0.144, 1.845, 0,
 0.220, 1.701, 0,
 0.318, 1.571, 0,
 0.436, 1.459, 0,
 0.617, 1.263, 0,
 0.772, 1.045, 0,
 0.896, 0.808, 0,
 0.987, 0.557, 0,
 1.044, 0.296, 0,
 1.064, 0.030, 0,
 1.167, 0.024, 0,
 1.181, 0.056, 0,
 1.205, 0.081, 0,
 1.236, 0.096, 0,
 1.270, 0.1, 0,
 1.304, 0.092, 0,
 1.333, 0.073, 0,
 1.354, 0.045, 0,
 1.364, 0.012, 0,
 1.564, 0, 0

				Example 2:

[image: ../Images/3Dshapes_revolve_ex4.png]
	
										workaround without status code 2:

										
										the same result with status code 2:

									
	
										ROTY -90
REVOLVE 26, 180, 16+32,
 7, 1, 0,
 6.0001, 1, 1,
 6, 1, 0,
 5.9999, 1.0002, 1,
 5.5001, 1.9998, 1,
 5.5, 2, 0,
 5.4999, 1.9998, 1,
 5.0001, 1.0002, 1,
 5, 1, 0,
 4.9999, 1, 1,
 4.0001, 1, 1,
 4, 1, 0,
 3+cos(15), 1+sin(15), 1,
 3+cos(30), 1+sin(30), 1,
 3+cos(45), 1+sin(45), 1,
 3+cos(60), 1+sin(60), 1,
 3+cos(75), 1+sin(75), 1,
 3, 2, 1,
 3+cos(105), 1+sin(105), 1,
 3+cos(120), 1+sin(120), 1,
 3+cos(135), 1+sin(135), 1,
 3+cos(150), 1+sin(150), 1,
 3+cos(165), 1+sin(165), 1,
 2, 1, 0,
 1.9999, 1, 0,
 1, 1, 0

										
										ROTY -90
REVOLVE 18, 180, 48,
 7, 1, 0,
 6, 1, 2,
 5.5, 2, 2,
 5, 1, 2,
 4, 1, 2,
 3+cos(15), 1+sin(15), 1,
 3+cos(30), 1+sin(30), 1,
 3+cos(45), 1+sin(45), 1,
 3+cos(60), 1+sin(60), 1,
 3+cos(75), 1+sin(75), 1,
 3, 2, 1,
 3+cos(105), 1+sin(105), 1,
 3+cos(120), 1+sin(120), 1,
 3+cos(135), 1+sin(135), 1,
 3+cos(150), 1+sin(150), 1,
 3+cos(165), 1+sin(165), 1,
 2, 1, 2,
 1, 1, 0

									

			RULED

				
				RULED n, mask,
 u1, v1, s1, ... un, vn, sn,
 x1, y1, z1, ... xn, yn, zn

			RULED{2}

				
				RULED{2} n, mask,
 u1, v1, s1, ... un, vn, sn,
 x1, y1, z1, ... xn, yn, zn

				
					[image: ../Images/3Dshapes_ruled_2.png]

					
						RULED is a surface based on a planar curve and a space curve having the same number of nodes. The planar curve polyline cannot have any holes.
						Straight segments connect the corresponding nodes of the two polylines.
					

					
						This is the only GDL element allowing the neighboring nodes to
						overlap.
					

					
						The second version, RULED{2}, checks the direction (clockwise or counterclockwise) in which the points of both the top polygon and
						base polygon were defined, and reverses the direction if necessary.
						(The original RULED command takes only the base polygon into account, which can lead to errors.)
					

					
						n: number of polyline nodes in each curve.

					

					
						ui, vi: coordinates of the planar curve nodes.

					

					
						xi, yi, zi: coordinates of the space curve nodes.

					

					
						mask:
							controls the existence of the bottom, top and side polygon and the visibility of the edges on the generator polylines.
							The side polygon connects the first and last nodes of the curves, if any of them are not closed.
						
mask = j1 + 2*j2 + 4*j3 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
	

						j1: base surface is present,

						j2: top surface is present (not effective if the top surface is not planar),

						j3: side surface is present (a planar quadrangle or two triangles),

						j5: edges on the planar curve are visible,

						j6: edges on the space curve are visible,

						j7: edges on the surface are visible, surface is not smooth.

					

					
						si: status of the lateral edges.

						0: lateral edges starting from the node are all visible,

						1: lateral edges starting from the node are used for showing the contour.

					

					
						n > 1

					
					[image: ../Images/3Dshapes_ruled_2_ex1.png]

				
				Example:

	
										R=3
RULED 16, 1+2+4+16+32,
 cos(22.5)*R, sin(22.5)*R, 0,
 cos(45)*R, sin(45)*R, 0,
 cos(67.5)*R, sin(67.5)*R, 0,
 cos(90)*R, sin(90)*R, 0,
 cos(112.5)*R, sin(112.5)*R, 0,
 cos(135)*R, sin(135)*R, 0,
 cos(157.5)*R, sin(157.5)*R, 0,
 cos(180)*R, sin(180)*R, 0,
 cos(202.5)*R, sin(202.5)*R, 0,
 cos(225)*R, sin(225)*R, 0,
 cos(247.5)*R, sin(247.5)*R, 0,
 cos(270)*R, sin(270)*R, 0,
 cos(292.5)*R, sin(292.5)*R, 0,
 cos(315)*R, sin(315)*R, 0,
 cos(337.5)*R, sin(337.5)*R, 0,
 cos(360)*R, sin(360)*R, 0,
 cos(112.5)*R, sin(112.5)*R, 1,
 cos(135)*R, sin(135)*R, 1,
 cos(157.5)*R, sin(157.5)*R, 1,
 cos(180)*R, sin(180)*R, 1,
 cos(202.5)*R, sin(202.5)*R, 1,
 cos(225)*R, sin(225)*R, 1,
 cos(247.5)*R, sin(247.5)*R, 1,
 cos(270)*R, sin(270)*R, 1,
 cos(292.5)*R, sin(292.5)*R, 1,
 cos(315)*R, sin(315)*R, 1,
 cos(337.5)*R, sin(337.5)*R, 1,
 cos(360)*R, sin(360)*R, 1,
 cos(22.5)*R, sin(22.5)*R, 1,
 cos(45)*R, sin(45)*R, 1,
 cos(67.5)*R, sin(67.5)*R, 1,
 cos(90)*R, sin(90)*R, 1

										
										[image: ../Images/3Dshapes_ruled_2_ex2.png]

									

			SWEEP

				
				SWEEP n, m, alpha, scale, mask,
 u1, v1, s1, ... un, vn, sn,
 x1, y1, z1, ... xm, ym, zm

				
					Surface generated by a polyline sweeping along a polyline space curve path.

					
						The plane of the polyline follows the path curve. The space curve has to start from the x-y plane.
						If this condition is not met, it is moved along the z axis to start on the x-y plane.
					

					The cross-section at point (xi, yi, zi) is perpendicular to the space curve segment between points (xi-1, yi-1, zi-1) and (xi, yi, zi).

					SWEEP can be used to model the spout of a teapot and other complex shapes.

					
						n: number of polyline nodes.

					

					
						m: number of path nodes.

					

					
						alpha: incremental polyline rotation on its own plane, from one path node to the next one.

					

					
						scale: incremental polyline scale factor, from one path node to the next one.

					

					
						ui, vi: coordinates of the base polyline nodes.

					

					
						xi, yi, zi: coordinates of the path curve nodes.

					

					
						mask: controls the existence of the bottom and top polygons’ surfaces and edges.
mask = j1 + 2*j2 + 4*j3 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
	

						j1: base surface is present,

						j2: top surface is present,

						j3: side surface is present,

						j5: base edges are visible,

						j6: top edges are visible,

						j7: cross-section edges are visible, surface is articulated.

					

					[image: ../Images/3Dshapes_sweep_mask.png]

					
						si: status of the lateral edges.

						0: lateral edges starting from the node are all visible,

						1: lateral edges starting from the node are used for showing the contour.

					

					Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

					
						See the section called “Additional Status Codes” for details.
					

					
						n > 1
m > 1
z1 < z2

					
					[image: ../Images/3Dshapes_sweep_ex1.png]

				
				Example:

	
										SWEEP 4, 12, 7.5, 1, 1+2+4+16+32,
 -0.5, -0.25, 0,
 0.5, -0.25, 0,
 0.5, 0.25, 0,
 -0.5, 0.25, 0,
 0, 0, 0.5,
 0, 0, 1,
 0, 0, 1.5,
 0, 0, 2,
 0, 0, 2.5,
 0, 0, 3,
 0, 0, 3.5,
 0, 0, 4,
 0, 0, 4.5,
 0, 0, 5,
 0, 0, 5.5,
 0, 0, 6

										
										[image: ../Images/3Dshapes_sweep_ex2.png]

									

			TUBE

				
				TUBE n, m, mask,
 u1, w1, s1,
 ...
 un, wn, sn,
 x1, y1, z1, angle1,
 ...
 xm, ym, zm, anglem

				
					
						Surface generated by a polyline sweeping along a space curve path without distortion of the generating cross-section.
						The internal connection surfaces are rotatable in the U-W plane of the
						instantaneous U-V-W coordinate system.
					

					
						V axis: approximates the tangent of the generator curve at the corresponding point.

					

					
						W axis: perpendicular to the V axis and pointing upward with respect to the local z axis.

					

					
						U axis: perpendicular to the V and W axes and forms with them a right-hand sided Cartesian coordinate system.

					

					
						If the V axis is vertical, then the W direction is not correctly defined. The W axis in the previous path node is used for
						determining a horizontal direction.
					

					The cross-section polygon of the tube measured at the middle of the path segments is always equal to the base polygon (u1, w1, ... un, wn).

					Section polygons in joints are situated in the bisector plane of the joint segments. The base polygon must be closed.

					
						n: number of the polyline nodes.

					

					
						m: number of the path nodes.

					

					
						ui, wi: coordinates of the base polyline nodes.

					

					
						xi, yi, zi: coordinates of the path curve nodes.

					

					
						anglei: rotation angle of the cross-section.

					

					
						mask: controls the existence of the bottom and top polygons’ surfaces and edges.
mask = j1 + 2*j2 + 16*j5 + 32*j6 + 64*j7 + 128*j8, where each j can be 0 or 1.
	

						j1: base surface is present,

						j2: end surface is present,

						j5: base edges (at x2, y2, z2) are visible,

						j6: end edges (at xm-1, ym-1, zm-1) are visible,

						j7: cross-section edges are visible, surface is articulated,

						j8: cross-section edges are sharp, the surface smoothing will stop here in OpenGL and rendering.

					

					[image: ../Images/3Dshapes_tube_mask.png]

					
						si: status of the lateral edges.

						0: lateral edges starting from the node are all visible,

						1: lateral edges starting from the node are used for showing the contour.

						2:
							when using ArchiCAD or Z-buffer Rendering Engine and setting Smooth Surfaces,
							the lateral edge belonging to this point defines a break. This solution is equivalent to the definition of additional nodes.
							The calculation is performed by the compiler. With other rendering methods, it has the same effect as using 0.
						

					

					Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

					Note

						The path comprises two points more than the number of generated sections.
						The first and the last points determine the position in space of the first and the last surfaces belonging to the TUBE.
						These points only play a role in determining the normal of the surfaces, they are not actual nodes of the path.
						The orientation of the surfaces is the same as that of the surfaces that would be generated at the nodes nearest to the two endpoints,
						if the TUBE were continued in the directions indicated by these.
					

					
						n > 2 and m > 3

					
				
				Example 1:

	
										[image: ../Images/3Dshapes_tube_ex1.png]

										
										[image: ../Images/3Dshapes_tube_ex2.png]

									

TUBE 4, 18, 16+32,
 2.0, 0.0, 0,
 0.0, 0.0, 0,
 0.0, 0.4, 0,
 2.0, 0.4, 0,
 -1, 0, 0, 0,
 0, 0, 0, 0,
 4, 0, 0.1, 0,
 6, 0, 0.15, 0,
 6+4*sin(15), 4 - 4*cos(15), 0.2, 0,
 6+4*sin(30), 4 - 4*cos(30), 0.25, 0,
 6+4*sin(45), 4 - 4*cos(45), 0.3, 0,
 6+4*sin(60), 4 - 4*cos(60), 0.35, 0,
 6+4*sin(75), 4 - 4*cos(75), 0.4, 0,
 10, 4, 0.45, 0,
 6+4*sin(105), 4 - 4*cos(105), 0.5, 0,
 6+4*sin(120), 4 - 4*cos(120), 0.55, 0,
 6+4*sin(135), 4 - 4*cos(135), 0.6, 0,
 6+4*sin(150), 4 - 4*cos(150), 0.65, 0,
 6+4*sin(165), 4 - 4*cos(165), 0.7, 0,
 6, 8, 0.75, 0,
 0, 8, 1, 0,
 -1, 8, 1, 0

				Example 2:

	
										TUBE 14, 6, 1+2+16+32,
 0, 0,0,
 0.03, 0,0,
 0.03, 0.02, 0,
 0.06, 0.02, 0,
 0.05, 0.0699, 0,
 0.05, 0.07, 1,
 0.05, 0.15, 901,
 1, 0, 801,
 0.08, 90, 2000,
 0.19, 0.15, 0,
 0.19, 0.19, 0,
 0.25, 0.19, 0,
 0.25, 0.25, 0,
 0, 0.25, 0,
 0, 1, 0, 0,
 0, 0.0001, 0, 0,
 0, 0, 0, 0,
 -0.8, 0, 0, 0,
 -0.8, 0.0001, 0, 0,
 -0.8, 1, 0, 0

										
										[image: ../Images/3Dshapes_tube_ex4.png]

									

				Example 3:

	
										TUBE 3, 7, 16+32,
 0, 0, 0,
 -0.5, 0, 0,
 0, 0.5, 0,
 0.2, 0, -0.2, 0,
 0, 0, 0, 0,
 0, 0, 5, 0,
 3, 0, 5, 0,
 3, 4, 5, 0,
 3, 4, 0, 0,
 3, 3.8, -0.2, 0

										
										[image: ../Images/3Dshapes_tube_ex3.png]

									

			TUBEA

				
				TUBEA n, m, mask,
 u1, w1, s1,
 ...
 un, wn, sn,
 x1, y1, z1,
 ...
 xm, ym, zm

				
					[image: ../Images/3Dshapes_tubea.png]

					
						TUBEA is a surface generated by a polyline sweeping along a space curve path with a different algorithm
						than that of the TUBE command.

					
						The section polygon generated in each joint of the path curve is equal with the base polygon (u1, w1, ... un, wn)
						and is situated in the bisector plane of the projections of the joint segments to the local x-y plane.
						The base polygon can be opened: in this case the section polygons will be generated to reach the local x-y plane as in the case of REVOLVE surfaces.
					

					The cross section of the tube measured at the middle of the path segments can be different from the base polygon.

					Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

					
						See the section called “Additional Status Codes” for details.
					

					[image: ../Images/3Dshapes_tubea_ex1.png]

				
				Example:

[image: ../Images/3Dshapes_tubea_ex2.png]
TUBEA 9, 7, 1 + 2 + 16 + 32,
 -1, 1, 0,
 0, 2, 0,
 0.8, 2, 0,
 0.8, 1.6, 0,
 0.8001, 1.6, 1,
 3.2, 1.6, 0,
 3.2, 2, 0,
 4, 2, 0,
 5, 1, 0,
 0, -7, 0,
 0, 0, 0,
 4, 0, 1,
 9, 3, 2.25,
 9, 10, 2.25,
 14, 10, 2.25,
 20, 15, 5

			COONS

				
				COONS n, m, mask,
 x11, y11, z11, ... x1n, y1n, z1n,
 x21, y21, z21, ... x2n, y2n, z2n,
 x31, y31, z31, ... x3m, y3m, z3m,
 x41, y41, z41, ... x4m, y4m, z4m

				
					A Coons patch generated from four boundary curves.

					
						mask:
mask = 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
	

						j3: edges of the 1st boundary (x1, y1, z1) are visible,

						j4: edges of the 2nd boundary (x2, y2, z2) are visible,

						j5: edges of the 3rd boundary (x3, y3, z3) are visible,

						j6: edges of the 4th boundary (x4, y4, z4) are visible,

						j7: edges on surface are visible, surface is not smooth.

					

					[image: ../Images/3Dshapes_coons_mask.png]

					
						n > 1, m > 1

					
				
				Example 1:

	
										COONS 6, 6, 4+8+16+32+64,
 ! 1st boundary, n=6
 0, 0, 5,
 1, 0, 4,
 2, 0, 3,
 3, 0, 2,
 4, 0, 1,
 5, 0, 0,
 ! 2nd boundary, n=6
 0, 5, 0,
 1, 5, 1,
 2, 5, 2,
 3, 5, 3,
 4, 5, 4,
 5, 5, 5,
 ! 3rd boundary, m=6
 0, 0, 5,
 0, 1, 4,
 0, 2, 3,
 0, 3, 2,
 0, 4, 1,
 0, 5, 0,
 ! 4th boundary, m=6
 5, 0, 0,
 5, 1, 1,
 5, 2, 2,
 5, 3, 3,
 5, 4, 4,
 5, 5, 5

										
										[image: ../Images/3Dshapes_coons_ex1.png]

									

				Example 2:

	
										COONS 7, 6, 4+8+16+32+64,
 ! 1st boundary, n=7
 1, 2, 0,
 0.5, 1, 0,
 0.2, 0.5, 0,
 -0.5, 0, 0,
 0.2, -0.5, 0,
 0.5, -1, 0,
 1, -2, 0,
 ! 2nd boundary, n=7
 6, 10, -2,
 6.5, 4, -1.5,
 5, 1, -1.2,
 4, 0, -1,
 5, -1, -1.2,
 6.5, -4, -1.5,
 6, -10, -2,
 ! 3rd boundary, m=6
 1, 2, 0,
 2, 4, -0.5,
 3, 6, -1,
 4, 8, -1.5,
 5, 9, -1.8,
 6, 10, -2,
 ! 4th boundary, m=6
 1, -2, 0,
 2, -4, -0.5,
 3, -6, -1,
 4, -8, -1.5,
 5, -9, -1.8,
 6, -10, -2

										
										[image: ../Images/3Dshapes_coons_ex2.png]

									

			MASS

				
				MASS top_material, bottom_material, side_material,
 n, m, mask, h,
 x1, y1, z1, s1,
 ...
 xn, yn, zn, sn,
 xn+1, yn+1, zn+1, sn+1,
 ...
 xn+m, yn+m, zn+m, sn+m

				
					The equivalent of the shape generated by the Mesh tool in ArchiCAD.

					
						top_material, bottom_material, side_material: name/index of the top, bottom and side materials.

					

					
						n: the number of nodes in the mass polygon.

					

					
						m: the number of nodes on the ridges.

					

					
						h: the height of the skirt (can be negative).

					

					
						xi, yi, zi: the coordinates of the nodes.

					

					
						mask:
mask = j1 + 4*j3 + 16*j5 + 32*j6 + 64*j7 + 128*j8, where each j can be 0 or 1.
	

						j1: base surface is present,

						j3: side surfaces are present,

						j5: base and side edges are visible,

						j6: top edges are visible,

						j7: top edges are visible, top surface is not smooth,

						j8: all ridges will be sharp, but the surface is smooth.

					

					[image: ../Images/3Dshapes_masking.png]

					
						si: similar to the PRISM_ command
							Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
						

					

					
						See the section called “Additional Status Codes” for details.
					

					
						n >= 3, m >= 0

					
				
				Example:

	
										MASS "Surf-White", "Surf-White", "Surf-White",
 15, 12, 117, -5.0,
 0, 12, 0, 15,
 8, 12, 0, 15,
 8, 0, 0, 15,
 13, 0, 0, 13,
 16, 0, 0, 13,
 19, 0, 0, 13,
 23, 0, 0, 13,
 24, 0, 0, 15,
 24, 12, 0, 15,
 28, 12, 0, 15,
 28, 20, 8, 13,
 28, 22, 8, 15,
 0, 22, 8, 15,
 0, 20, 8, 13,
 0, 12, 0, -1,
 0, 22, 8, 0,
 28, 22, 8, -1,
 23, 17, 5, 0,
 23, 0, 5, -1,
 13, 13, 1, 0,
 13, 0, 1, -1,
 16, 0, 7, 0,
 16, 19, 7, -1,
 0, 20, 8, 0,
 28, 20, 8, -1,
 19, 17, 5, 0,
 19, 0, 5, -1

										
										[image: ../Images/3Dshapes_mass_ex.png]

									

			POLYROOF

				
				POLYROOF defaultMat, k, m, n,
 offset, thickness, applyContourInsidePivot,
 z_1, ... z_k,
 pivotX_1, pivotY_1, pivotMask_1,
 roofAngle_11, gableOverhang_11, topMat_11, bottomMat_11,
 ...
 roofAngle_1k, gableOverhang_1k, topMat_1k, bottomMat_1k,
 ...
 pivotX_m, pivotY_m, pivotMask_m,
 roofAngle_m1, gableOverhang_m1, topMat_m1, bottomMat_m1,
 ...
 roofAngle_mk, gableOverhang_mk, topMat_mk, bottomMat_mk,
 contourX_1, contourY_1, contourMask_1, edgeTrim_1, edgeAngle_1, edgeMat_1,
 ...
 contourX_n, contourY_n, contourMask_n, edgeTrim_n, edgeAngle_n, edgeMat_n

				
					
						The command creates a possibly multi-level roof in which the geometry is controlled by multiple parameters,
						most importantly the roof angles and two polygons: a pivot polygon and a contour polygon. At the pivot polygon, the roof is slanted at the roof angle.
						It ascends until it either reaches the height of the next level or until it is eliminated by its sides encountering one another.
						It also descends downwards, until it reaches the contour polygon, which cuts off parts of the roof outside of it.
						The contour polygon can also be used to cut holes in the roof.
					

					
						defaultMat:
							the numeric index of the "inner" material of the roof.
							This material becomes visible at gables and at cut surfaces, e.g. if the roof is cut by a plane.
						

					

					
						k: the number of levels.

					

					
						m: the number of pivot polygon vertices.

					

					
						n: the number of contour polygon vertices.

					

					
						offset: an offset for the thickness of the roof.

					

					
						thickness: the thickness of the roof.

					

					
						applyContourInsidePivot:
							if set to 0, the outer contour polygon is only applied outside of the pivot polygon.
							If set to 1, the outer contour polygon is applied both inside and outside of the pivot polygon.
							The 0 setting may be used to prevent the contour polygon from cutting off gables that lean outwards.
						

					

					
						z_i: the Z coordinate of a level.

					

					
						pivotX_i, pivotY_i: coordinates of the pivot polygon vertices.

					

					
						pivotMask_i:

						0: marks a normal vertex,

						-1:
							marks the end of the current pivot subpolygon (outer contour or hole).
							Data for such a vertex must be a copy of the data for the first vertex of the subpolygon.
							A polygon must always be closed with a mask value of -1, even if there are no holes inside it.
						

					

					
						roofAngle_i: angle of slant for a pivot edge on a given level. If the angle >= 90, that part of the roof becomes a gable.

					

					
						gableOverhang_i:
							at the sides of a gable, the roof can extend over a lower level of itself.
							The amount of this can be controlled by this parameter,
							which has effect only on gables (roofAngle >= 90) that are at least on the second level of the roof.
						

					

					
						topMat_i, bottomMat_i: the numeric index of the materials for the top and bottom of the roof.

					

					
						contourX_i, contourY_i: coordinates of the contour polygon vertices.

					

					
						contourMask_i:

						0: marks a normal vertex,

						-1:
							marks the end of the current contour subpolygon (outer contour or hole).
							Data for such a vertex must be a copy of the data for the first vertex of the subpolygon.
							A polygon must always be closed with a mask value of -1, even if there are no holes inside it.
						

					

					
						edgeTrim_i: specifies the way the edge is trimmed by the contour polygon. Possible values are:

						0: Vertical,

						1: Perpendicular to roof plane,

						2: Horizontal,

						3: Custom angle to roof plane.

					

					
						edgeAngle_i: the custom angle of the edge to the roof plane. It has effect only if edgeTrim is set to 3 (custom angle to roof plane).

					

					
						edgeMat_i: numeric index of the material at the edge the roof, where the contour cuts it

					

						
										[image: ../Images/3Dshapes_polyroofMaterials.png]

									
	
										Figure 1: Materials
									

						
										[image: ../Images/3Dshapes_polyroofAngles.png]

									
	
										Figure 2: Angles
									

				
				Example:

POLYROOF "Paint-01",
 2, 5, 5,
 0, 0.2, 0,
 ! Start of z values --
 2.7,
 3.2,
 ! Start of pivot polygon ---
 2, 8, 0,
 45, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
 90, 0.5, ind(material, "Paint-01"), ind(material, "Paint-01"),
 2, 3, 0,
 45, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
 65, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
 10, 3, 0,
 45, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
 65, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
 10, 8, 0,
 45, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
 65, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
 2, 8, -1,
 45, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
 90, 0.5, ind(material, "Paint-01"), ind(material, "Paint-01"),
 !Start of contour polygon ---
 1.5, 8.5, 0, 0, 0, ind(material, "Paint-01"),
 1.5, 2.5, 0, 0, 0, ind(material, "Paint-01"),
 10.5, 2.5, 0, 0, 0, ind(material, "Paint-01"),
 10.5, 8.5, 0, 0, 0, ind(material, "Paint-01"),
 1.5, 8.5, -1, 0, 0, ind(material, "Paint-01")
Output: see Figure 1

			EXTRUDEDSHELL

				
				EXTRUDEDSHELL topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4,
 defaultMat,
 n, offset, thickness, flipped, trimmingBody,
 x_tb, y_tb, x_te, y_te, topz, tangle,
 x_bb, y_bb, x_be, y_be, bottomz, bangle,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThicakenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n

				
					Surface created by first extruding a polyline, then adding thickness to it.

					
						topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4: Materials on the top, bottom and four sides of the object.

					

					
						defaultMat:
							the numeric index of the "inner" material of the object.
							This material becomes visible at cut surfaces, e.g. if the object is cut by a plane.
						

					

					
						n: number of profile base polyline vertices

					

					
						offset: an offset for the thickness of the shell. Can not be negative.

					

					
						thickness: the thickness of the shell.

					

					
						flipped:

						1: if the shell should be flipped,

						0: otherwise.

					

					
						trimmingBody:

						1: if the shell is to be closed for trimming purposes,

						0: otherwise.

					

					
						x_tb, y_tb, x_te, y_te, topz, tangle:
							Specify the top plane of the extrusion.
							The meaning of the parameters is the same as for the SPRISM_{2} command.
						

					

					
						x_bb, y_bb, x_be, y_be, bottomz, bangle:
							Specify the bottom plane of the extrusion.
							The meaning of the parameters is the same as for the SPRISM_{2} command.
						

					

					
						preThickenTran_i: a transformation executed before thickening. See the XFORM command for the meaning of parameters.

					

					
						x_i, y_i, s_i:
							X and Y coordinates and status values for the base profile polyline. See the EXTRUDE command for details.
							The visibility of the sides can not be controlled with the status.
						

					

				
				Example:

[image: ../Images/3Dshapes_extrudeshell_ex.png]
EXTRUDEDSHELL "Paint-02", "Surf-Stucco Yellow",
 "Surf-Stucco Yellow", "Surf-Stucco Yellow", "Surf-Stucco Yellow",
 "Surf-Stucco Yellow", "Surf-Stucco Yellow",
 3, 0.00, 0.30, 0, 0
 ! -- 2 slant planes --
 0.00, 0.00, 0.00, 1.00, 0.00, 0.00,
 0.00, 0.00, 0.00, 1.00, -10.00, 0.00,
 ! -- transformation matrix ---
 0.00, 0.00, 1.00, 0.00,
 1.00, 0.00, 0.00, 0.00,
 0.00, 1.00, 0.00, 0.00,
 ! -- profile polyline --
 2.00, 0.00, 15,
 0.00, 2.00, 15,
 -2.00, 0.00, 15

			REVOLVEDSHELL

				
				REVOLVEDSHELL topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4,
 defaultMat,
 n, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n

				
					Surface created by rotating a polyline defined in the x-y plane around the x axis, then adding thickness to it.

					
						topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4: Materials on the top, bottom and four sides of the object.

					

					
						defaultMat:
							the numeric index of the "inner" material of the object.
							This material becomes visible at cut surfaces, e.g. if the object is cut by a plane.
						

					

					
						n: number of profile base polyline vertices.

					

					
						offset: an offset for the thickness of the shell. Can not be negative.

					

					
						thickness: the thickness of the shell.

					

					
						flipped:

						1: if the shell should be flipped,

						0: otherwise.

					

					
						trimmingBody:

						1: if the shell is to be closed for trimming purposes,

						0: otherwise.

					

					
						alphaOffset: the sweep start angle.

					

					
						alpha: the sweep angle length in degrees, may be negative.

					

					
						preThickenTran_i: a transformation executed before thickening. See the XFORM command for the meaning of parameters.

					

					
						x_i, y_i, s_i:
							X and Y coordinates and status values for the base profile polyline. See the EXTRUDE command for details.
							The visibility of the sides can not be controlled with the status.
						

					

				
				Example:

REVOLVEDSHELL "Paint-02", "Surf-Stucco Yellow", "Surf-Stucco Yellow", "Surf-Stucco Yellow",
 "Surf-Stucco Yellow", "Surf-Stucco Yellow", "Surf-Stucco Yellow",
 2, 0.00, 0.30, 0, 0, 0.00, 270.00,
 ! -- transformation matrix ---
 0.00, 0.00, -1.00, 0.00,
 0.00, 1.00, 0.00, 0.00,
 1.00, 0.00, 0.00, 0.00,
 ! -- profile polyline --
 4.00, 0.00, 2,
 0.00, 4.00, 2
[image: ../Images/3Dshapes_revolvedshell_ex.png]

			REVOLVEDSHELLANGULAR

				
				REVOLVEDSHELLANGULAR topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4,
 defaultMat,
 n, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
 segmentationType, nOfSegments,
 preThickenTran_11, preThickenTran_12, preThickenTran_13,
 preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23,
 preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33,
 preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n

				
					An angular variant of the REVOLVEDSHELL command. Parameters are the same with the addition of the following extra parameters:

					
						segmentationType: Must be either 1 or 2.

						1: means that 360 degrees of revolution is split into nOfSegments segments,

						2: means that the actual revolution angle (given by the alpha parameter) is split into nOfSegments segments.

					

					
						nOfSegments: Number of segments, see segmentationType parameter above.

					

				
			RULEDSHELL

				
				RULEDSHELL topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4, defaultMat,
 n, m, g,
 offset, thickness, flipped, trimmingBody,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 firstpolyX_1, firstpolyY_1, firstpolyS_1,
 ...
 firstpolyX_n, firstpolyY_n, firstpolyS_n,
 secondpolyX_1, secondpolyY_1, secondpolyS_1,
 ...
 secondpolyX_m, secondpolyY_m, secondpolyS_m,
 profile2Tran_11, profile2Tran_12, profile2Tran_13, profile2Tran_14
 profile2Tran_21, profile2Tran_22, profile2Tran_23, profile2Tran_24
 profile2Tran_31, profile2Tran_32, profile2Tran_33, profile2Tran 34
 generatrixFirstIndex_1, generatrixSecondIndex_1,
 ...
 generatrixFirstIndex_g, generatrixSecondIndex_g

				
					Surface created by connecting two polylines.

					
						topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4: Materials on the top, bottom and four sides of the object.

					

					
						defaultMat:
							the numeric index of the "inner" material of the object.
							This material becomes visible at cut surfaces, e.g. if the object is cut by a plane.
						

					

					
						n: number of vertices for first profile base polyline.

					

					
						m: number of vertices for second profile base polyline.

					

					
						g: number of generatrices.

					

					
						offset: an offset for the thickness of the shell. Can not be negative.

					

					
						thickness: thickness of the shell.

					

					
						flipped:

						1: if the shell should be flipped,

						0: otherwise

					

					
						preThickenTran: a transformation executed before thickening. See the XFORM command for the meaning of parameters.

					

					
						trimmingBody:

						1: if the shell is to be closed for trimming purposes,

						0: otherwise

					

					
						firstpolyX, firstpolyY, firstpolyS:
							X and Y coordinates and status values for the first base profile polyline.
							See the REVOLVE command for details.
						

					

					
						secondpolyX, secondpolyY, secondpolyS:
							X and Y coordinates and status values for the second base profile polyline. See the REVOLVE command for details.
						

					

					
						profile2Tran:
							a transformation executed on the second profile.
							Use this transformation to position the second profile relative to the first one. See the XFORM command for the meaning of parameters.
						

					

					
						generatrixFirstIndex, generatrixSecondIndex:
							pairs of indexes, one from the first polyline and one from the second polyline.
							The vertexes with the given indexes will be connected with a line.
						

					

				
				Example:

[image: ../Images/3Dshapes_ruledshell_ex.png]
RULEDSHELL "Paint-14", "Paint-14",
 "Paint-14", "Paint-14", "Paint-14", "Paint-14", "Paint-14",
 4, 3, 3,
 0.00, 0.30, 0, 0,
 ! -- transformation matrix ---
 1.00, 0.00, 0.00, 0.00,
 0.00, 0.00, -1.00, 0.00,
 0.00, 1.00, 0.00, 0.00,
 ! -- profile 1 polyline --
 0.00, 0.00, 2,
 2.00, 2.00, 2,
 4.00, 0.00, 2,
 6.00, 0.00, 2,
 ! -- profile 2 polyline --
 0.00, 0.00, 2,
 2.00, 2.00, 2,
 6.00, 1.00, 2,
 ! -- transformation matrix ---
 1.00, 0.00, 0.00, 0.00,
 0.00, 1.00, 0.00, 0.00,
 0.00, 0.00, 1.00, -10.00,
 ! -- generatrices --
 1, 1,
 2, 2,
 4, 3

			
Elements for Visualization

LIGHT

				
				LIGHT red, green, blue, shadow,
 radius, alpha, beta, angle_falloff,
 distance1, distance2,
 distance_falloff [[,] ADDITIONAL_DATA name1 = value1,
 name2 = value2, ...]

				
					
						A light source radiates [red, green, blue] colored light from the local origin along the local x axis.
						The light is projected parallel to the x axis from a point or circle source.
						It has its maximum intensity within the alpha-angle frustum of a cone and falls to zero at the beta-angle frustum of a cone.
						This falloff is controlled by the angle_falloff parameter.
						(Zero gives the light a sharp edge, higher values mean that the transition is smoother.)
						The effect of the light is limited along the axis by the distance1 and distance2 clipping values.
						The distance_falloff parameter controls the decrease in intensity depending on the distance.
						(Zero value means a constant intensity; bigger values are used for stronger falloff.)
					

					GDL transformations affect only the starting point and the direction of the light.

					
						shadow: controls the light’s shadow casting.

						0: light casts no shadows,

						1: light casts shadows.

					

					[image: ../Images/3Dshapes_light.png]

					
						alpha <= beta <= 80°

					
					The following parameter combinations have special meanings:

					
						radius = 0, alpha = 0, beta = 0:
						A point light, it radiates light in every direction and does not cast any shadows.
						The shadow and angle_falloff parameters are ignored, the values shadow = 0, angle_falloff = 0 supposed.
					

					
						radius > 0, alpha = 0, beta = 0:
						A directional light with parallel beams.
					

					[image: ../Images/3Dshapes_light_cone3.png]

					
						r = 0, alpha > 0, beta > 0:
						A directional light with conic beams.
					

					[image: ../Images/3Dshapes_light_cone1.png]

					
						r > 0, alpha = 0, beta > 0:
						A directional light with parallel beam and conic falloff.
					

					[image: ../Images/3Dshapes_light_cone2.png]

					
						Light definition can contain optional additional data definitions after the ADDITIONAL_DATA keyword.
						Additional data has a name (namei) and a value (valuei), which can be an expression of any type, even an array.
						If a string parameter name ends with the substring "_file", its value is considered to be a file name and will be
						included in the archive project.
					

					Different meanings of additional data can be defined and used by ArchiCAD or Add-Ons to ArchiCAD.

					
						
							See meanings of LightWorks Add-On parameters at
							http://www.graphisoft.com/support/developer/documentation/LibraryDevDoc/16/.
						
					

				
				Example 1:

LIGHT 1.0,0.2,0.3, ! RGB
 1, ! shadow on
 1.0, ! radius
 45.0, 60.0, ! angle1, angle2
 0.3, ! angle_falloff
 1.0, 10.0, ! distance1, distance2
 0.2 ! distance_falloff

				Example 2:

The library part dialog box for lights in ArchiCAD:
[image: ../Images/3Dshapes_light_dialog.PNG]

						Part of the corresponding GDL script:
					
IF C > 0 THEN
 LIGHT G/100*D, G/100*E, G/100*F, ! RGB
 ...
ENDIF

			PICTURE

				
				PICTURE expression, a, b, mask

				
					A picture element for photorendering.

					[image: ../Images/3Dshapes_picture.png]

					
						A string type expression means a file name, a numeric expression or the index of a picture stored in the library part.
						A 0 index is a special value that refers to the preview picture of the library part.
						Other pictures can only be stored in library parts when saving the project or selected elements containing pictures as GDL Objects.
					

					
						Indexed picture reference cannot be used in the MASTER_GDL script when attributes are merged into the current attribute set.
						The image is fitted on a rectangle treated as a RECT in any other 3D projection method.
					

					
						mask: alpha + distortion

					

					
						alpha: alpha channel control.

						0: do not use alpha channel; picture is a rectangle,

						1: use alpha channel; parts of the picture may be transparent.

					

					
						distortion: distortion control.

						0: fit the picture into the given rectangle,

						2: fit the picture in the middle of the rectangle using the natural aspect ratio of the picture,

						4: fill the rectangle with the picture in a central position using natural aspect ratio of the picture.

					

						
										distortion=0
										
										distortion=2
										
										distortion=4
									
	
										[image: ../Images/3Dshapes_picture_distortion.png]

										
										[image: ../Images/3Dshapes_picture_fillrect1.png]

										
										[image: ../Images/3Dshapes_picture_fillrect2.png]

									

				
			
3D Text Elements

TEXT

				
				TEXT d, 0, expression

				
					
						A 3D representation of the value of a string or numeric type
						expression in the current style.
					

					
						See the [SET] STYLE command and the DEFINE STYLE command.
					

					
						d: thickness of the characters in meters.

					

					In the current version of GDL, the second parameter is always zero.

					Note

						For compatibility with the 2D GDL script,
						character heights are always interpreted in millimeters in DEFINE STYLE statements.
					

				
				Example 1:

[image: ../Images/3Dshapes_text_ex1.png]
DEFINE STYLE "aa" "New York", 3, 7, 0
SET STYLE "aa"
TEXT 0.005, 0, "3D Text"

				Example 2:

[image: ../Images/3Dshapes_text_ex2.png]
name = "Grand"
ROTX 90
ROTY -30
TEXT 0.003, 0, name
ADDX STW (name)/1000
ROTY 60
TEXT 0.003, 0, "Hotel"

			RICHTEXT

				
				RICHTEXT x, y,
 height, 0, textblock_name

				
					
						A 3D representation of a previously defined TEXTBLOCK.
						For more details, see the TEXTBLOCK command.
					

					
						x, y: X-Y coordinates of the richtext location.

					

					
						height: thickness of the characters in meters.

					

					
						textblock_name: the name of a previously defined TEXTBLOCK.

					

					In the current version of GDL, the 4th parameter is always zero.

				
			
Primitive Elements

				The primitives of the 3D data structure are VERT, VECT, EDGE, PGON and BODY.
				The bodies are represented by their surfaces and the connections between them.
				The information to execute a 3D cutaway comes from the connection information.
			

				Indexing starts with 1, and a BASE statement or any new body (implicit BASE statement) resets indices to 1.
				For each edge, the indices of the adjacent polygons (maximum 2) are stored.
				Edges’ orientations are defined by the two vertices determined first and second.
			

				Polygons are lists of edges with an orientation including the indices of the edges. These numbers can have a negative prefix.
				This means that the given edge is used in the opposite direction. Polygons can include holes.
				In the list of edges, a zero index indicates a new hole. Holes must not include other holes. One edge may belong to 0 to 2 polygons.
				In the case of closed bodies, the polygon’s orientation is correct if the edge has different prefixes in the edge list of the two polygons.
			

				The normal vectors of the polygons are stored separately.
				In the case of closed bodies, they point from the inside to the outside of the body.
				The orientation of the edge list is counterclockwise (mathematical positive), if you are looking at it from the outside.
				The orientation of the holes is opposite to that of the parent polygon. Normal vectors of an open body must point to the same side of the body.
			

				To determine the inside and outside of bodies they must be closed. A simple definition for a closed body is the following:
				each edge has exactly two adjacent polygons.
			

				The efficiency of the cutting, hidden line removal or rendering algorithms is lower for open bodies.
				Each compound three-dimensional element with regular parameters is a closed body in the internal 3D data structure.
			

				Contour line searching is based on the status bits of edges and on their adjacent polygons.
				This is automatically set for compound curved elements but it is up to you to specify these bits correctly in the case of primitive elements.
			

				In the case of a simplified definition (vect = 0 or status < 0 in a PGON) the primitives that are referred to by others must precede
				their reference. In this case, the recommended order is:
			
VERT (TEVE)
EDGE
(VECT)
PGON (PIPG)
COOR
BODY
Searching for adjacent polygons by the edges is done during the execution of the BODY command.
The numbering of VERTs, EDGEs, VECTs and PGONs is relative to the last (explicit or implicit) BASE statement.

				Status values are used to store special information about primitives.
				Each single bit usually has an independent meaning in the status, but there are some exceptions.
			

				Given values can be added together. Other bit combinations than the ones given below are strictly reserved for internal use.
				The default for each status is zero.
			
VERT

				
				VERT x, y, z

				
					A node in the x-y-z space, defined by three coordinates.

				
			TEVE

				
				TEVE x, y, z, u, v

				
					
						Extension of the VERT command including a texture coordinate definition.
						Can be used instead of the VERT command if user-defined texture coordinates are required
						instead of the automatic texture wrapping (see the COOR command).
					

					
						x, y, z: coordinates of a node.

					

					
						u, v:
							texture coordinates of the node (u, v)
							coordinates for each vertex of the current body must be specified and each vertex should have only one texture coordinate.
							If VERT and TEVE statements are mixed inside a body definition, (u, v) coordinates are ineffective.
						

					

					Note
The (u, v) texture coordinates are only effective in photorenderings, and not for vectorial fill mapping.

				
			VECT

				
				VECT x, y, z

				
					
						Definition of the normal vector of a polygon by three coordinates.
						In case of a simplified definition (vect=0 in a PGON), these statements can be omitted.
					

				
			EDGE

				
				EDGE vert1, vert2, pgon1, pgon2, status

				
					Definition of an edge.

					
						vert1, vert2: index of the endpoints. The vert1 and vert2 indices must be different and referenced to previously defined VERTs.

					

					
						pgon1, pgon2: indices of the neighboring polygons. Zero and negative values have special meanings:

						0: terminal or standalone edge,

						< 0: possible neighbors will be searched for,

					

					
						status: Status bits:
status = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
	

						j1: invisible edge,

						j2: edge of a curved surface.

						Reserved status bits for future use:

						j3: first edge of a curved surface (effective only when j2=1),

						j4: last edge of a curved surface (effective only when j2=1),

						j5: the edge is an arc segment,

						j6: first segment of an arc (effective only when j4=1),

						j7: last segment of an arc (effective only when j4=1).

					

				
			PGON

				
				PGON n, vect, status, edge1, edge2, ... edgen

				
					Polygon definition.

					
						n: number of edges in the edge list.

					

					
						vect: index of the normal vector. It must refer to a previously defined VECT.

					

					Note
If vect = 0, the program will calculate the normal vector during the analysis.

					
						edge1, edge2, ... edgen:
							these indices must refer to previously defined EDGEs.
							A zero value means the beginning or the end of a hole definition.
							A negative index changes the direction of the stored normal vector or edge to the opposite in the polygon.
							(The stored vector or edge does not change; other polygons can refer to it using the original orientation with a positive index.)
						

					

					
						status: Status bits:
status = j1 + 2*j2 + 16*j5 + 32*j6 + 64*j7 + 4*j3 + 8*j4, where each j can be 0 or 1.
	

						j1: invisible polygon,

						j2: polygon of a curved surface,

						j5: concave polygon,

						j6: polygon with hole(s),

						j7: hole(s) are convex (effective only when j6=1),

						Reserved status bits for future use:

						j3: first polygon of a curved surface (effective only when j2=1),

						j4: last polygon of a curved surface (effective only when j2=1).

					

					If the status value is negative, the engine will calculate the status of the polygon (like concave polygon or polygon with hole).

					n = 0 is allowed for special purposes.

				
			PGON{2}

				
				PGON{2} n, vect, status, wrap, edge_or_wrap1, ..., edge_or_wrapn

				
					The first three parameters are similar to the ones at the PGON command.

					
						wrap: wrapping mode + projection type.

						0: the global wrapping mode is applied,

						> 0: the meaning is the same as it is in the COOR command.

					

					
						edge_or_wrap1, ..., edge_or_wrapn: The number and meaning of these parameters are based on the wrap definition:

						edge1, ..., edgen:
							if wrap is 0; in this case edgen means the same as at the PGON command,
							and globally defined texture mapping will be applied;
						

						x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4, edge1, ..., edgen:
							if wrapping mode isn't 0 in wrap;
							in this case xi, yi, zi coordinates defining the coordinate system of the texture mapping for the polygon;
						

						edge1, u1, v1, ..., edgen, un, vn:
							if wrapping mode is 0 but projection type isn't 0 in wrap;
							in this case ui, vi texture space coordinates are the same as at the TEVE command;
							the mapping will affect the currently defined polygon only.
						

					

				
			PIPG

				
				PIPG expression, a, b, mask, n, vect,
 status,
 edge1, edge2, ... edgen

				
					
						Picture polygon definition.
						The first four parameters are the same as in the PICTURE element; the remaining ones are the same as in the PGON element.
					

				
			COOR

				
				COOR wrap, vert1, vert2, vert3, vert4

				
					Local coordinate system of a BODY for the fill and texture mapping.

					
						wrap: wrapping mode + projection type

					

					
						Wrapping modes:

						1: planar box (deprecated),

						2: box,

						3: cylindrical,

						4: spherical,

						5: same as the cylindrical fill mapping, but in rendering the top and the bottom surface will get a circular mapping,

						6: planar.

					

					
						Projection types:

						256: the fill always starts at the origin of the local coordinate system,

						1024: quadratic texture projection (recommended),

						2048: linear texture projection based on the average distance,

						4096: linear texture projection based on normal triangulation.

					

					Note

						The last three values are only effective with custom texture coordinate definitions
						(see the TEVE command).
					

					
						vert1: index of a VERT, representing the origin of the local coordinate system.

					

					
						vert2, vert3, vert4: indices of VERTs defining the three coordinate axes.

					

					Use a minus sign (-) before VERT indices if they are used only for defining the local coordinate system.

					[image: ../Images/3Dshapes_coor.png]

				
				Example:
For custom texture axes:
CSLAB_ "Brick-White", "Brick-White", "Brick-White",
 4, 0.5,
 0, 0, 0, 15,
 1, 0, 0, 15,
 1, 1, 1, 15,
 0, 1, 1, 15
BASE
VERT 1, 0, 0 !#1
VERT 1, 1, 1 !#2
VERT 0, 0, 0 !#3
VERT 1, 0, 1 !#4
COOR 2, -1, -2, -3, -4
BODY 1
[image: ../Images/3Dshapes_coor_ex.png]

			BODY

				
				BODY status

				
					Composes a body defined with the above primitives.

					
						status: Status bits:
status = j1 + 2*j2 + 4*j3 + 32*j6 + 64*j7, where each j can be 0 or 1.
	

						j1: closed body,

						j2: body including curved surface(s),

						j3: surface model: when the body is cut, no surface originates on the cutting plane,

						j6: body always casts shadow independently from automatic preselection algorithm,

						j7: body never casts shadow.

						
							If neither j6 nor j7 are set, the automatic shadow preselection is performed.
						

						
							See the SHADOW command.
						

						
							If the status value is negative, the engine will calculate the status of the body.
						

					

				
				Example:

[image: ../Images/3Dshapes_body_ex.png]
1: Complete description
VERT 0.0, 0.0, 0.0 !#1
VERT 1.0, 0.0, 0.0 !#2
VERT 1.0, 1.0, 0.0 !#3
VERT 0.0, 1.0, 0.0 !#4
VERT 0.0, 0.0, 1.0 !#5
VERT 1.0, 0.0, 1.0 !#6
VERT 1.0, 1.0, 1.0 !#7
VERT 0.0, 1.0, 1.0 !#8
EDGE 1, 2, 1, 3, 0 !#1
EDGE 2, 3, 1, 4, 0 !#2
EDGE 3, 4, 1, 5, 0 !#3
EDGE 4, 1, 1, 6, 0 !#4
EDGE 5, 6, 2, 3, 0 !#5
EDGE 6, 7, 2, 4, 0 !#6
EDGE 7, 8, 2, 5, 0 !#7
EDGE 8, 5, 2, 6, 0 !#8
EDGE 1, 5, 6, 3, 0 !#9
EDGE 2, 6, 3, 4, 0 !#10
EDGE 3, 7, 4, 5, 0 !#11
EDGE 4, 8, 5, 6, 0 !#12
VECT 1.0, 0.0, 0.0 !#1
VECT 0.0, 1.0, 0.0 !#2
VECT 0.0, 0.0, 1.0 !#3
PGON 4, -3, 0, -1, -4, -3, -2 !#1 !VERT1,2,3,4
PGON 4, 3, 0, 5, 6, 7, 8 !#2 !VERT5,6,7,8
PGON 4, -2, 0, 1, 10, -5, -9 !#3 !VERT1,2,5,6
PGON 4, 1, 0, 2, 11, -6, -10 !#4 !VERT2,3,6,7
PGON 4, 2, 0, 3, 12, -7, -11 !#5 !VERT3,4,7,8
PGON 4, -1, 0, 4, 9, -8, -12 !#6 !VERT1,4,5,8
BODY 1 !CUBE

						2: (no direct reference to the polygons or the vectors, they
						will be calculated)
					
VERT 0.0, 0.0, 0.0 !#1
VERT 1.0, 0.0, 0.0 !#2
VERT 1.0, 1.0, 0.0 !#3
VERT 0.0, 1.0, 0.0 !#4
VERT 0.0, 0.0, 1.0 !#5
VERT 1.0, 0.0, 1.0 !#6
VERT 1.0, 1.0, 1.0 !#7
VERT 0.0, 1.0, 1.0 !#8
EDGE 1, 2, -1, -1, 0 !#1
EDGE 2, 3, -1, -1, 0 !#2
EDGE 3, 4, -1, -1, 0 !#3
EDGE 4, 1, -1, -1, 0 !#4
EDGE 5, 6, -1, -1, 0 !#5
EDGE 6, 7, -1, -1, 0 !#6
EDGE 7, 8, -1, -1, 0 !#7
EDGE 8, 5, -1, -1, 0 !#8
EDGE 1, 5, -1, -1, 0 !#9
EDGE 2, 6, -1, -1, 0 !#10
EDGE 3, 7, -1, -1, 0 !#11
EDGE 4, 8, -1, -1, 0 !#12
PGON 4, 0, -1, -1, -4, -3, -2 !#1
!VERT1,2,3,4
PGON 4, 0, -1, 5, 6, 7, 8 !#2
!VERT5,6,7,8
PGON 4, 0, -1, 1, 10, -5, -9 !#3
!VERT1,2,5,6
PGON 4, 0, -1, 2, 11, -6, -10 !#4
!VERT2,3,6,7
PGON 4, 0, -1, 3, 12, -7, -11 !#5
!VERT3,4,7,8
PGON 4, 0, -1, 4, 9, -8, -12 !#6
!VERT1,4,5,8
BODY -1 !CUBE

			BASE

				
				BASE

				
					
						Resets counters for low-level geometric elements (VERT, TEVE, VECT, EDGE, PGON and PIPG) statements.
						Implicitly issued after every compound element definition.
					

				
			
Cutting in 3D

CUTPLANE

				
				CUTPLANE [x [, y [, z [, side [, status]]]]]
[statement1 ... statementn]
CUTEND

			CUTPLANE{2}

				
				CUTPLANE{2} angle [, status]
[statement1 ... statementn]
CUTEND

			CUTPLANE{3}

				
				CUTPLANE{3} [x [, y [, z [, side [, status]]]]]
[statement1 ... statementn]
CUTEND

				
					
						Creates a cutting plane and removes the cut parts of enclosed
						shapes. CUTPLANE may have a different number of parameters.
					

					If CUTPLANE has the following number of parameters:

					0: x-y plane;

					1: cutting plane goes across x axis, angle is between cutting plane and x-y plane;

					2: cutting plane is parallel to z axis, crosses x axis and y axis at the given values;

					3: cutting plane crosses the x, y and z axes at the given values;

					4: the first three parameters are as above, with the addition of the side value as follows:

					
						side: definition of the side to cut.

						0: removes parts above cutting plane (default),

						1: removes parts below cutting plane; in case of x-y, x-z, y-z, removes the parts in the negative direction of the axis.

					

					
						status: status control of the cut surfaces.
status = j1 + 2*j2 + 4*j3 + 256*j9, where each j can be 0 or 1.
	

						j1: use the attributes of the body for the generated polygons and edges.

						j2: generated cut polygons will be treated as normal polygons.

						j3: generated cut edges will be invisible.

						j9: vertices on the cutting plane are treated as removed.

					

					
						The cut (without the side parameter) removes parts above the cutting plane.
						If the first three parameters define the x-y, x-z or y-z plane (for example, 1.0, 1.0, 0.0 defines the x-y plane),
						the parts in the positive direction of the third axis are removed.
					

					
						Any number of statements can be added between CUTPLANE and CUTEND.
						It is also possible to include CUTPLANEs in macros. CUTPLANE parameters refer to the current coordinate system.
					

					
						Transformations between CUTPLANE and CUTEND have no effect on this very cutting plane,
						but any successive CUTPLANEs will be transformed.
						Therefore, it is recommended to use as many transformations to set up the CUTPLANE as necessary,
						then delete these transformations before you define the shapes to cut.
					

					
						If transformations used only to position the CUTPLANE are not removed,
						you may think that the CUTPLANE is at a wrong position when, in reality, it is the shapes that have moved away.
					

					
						Pairs of CUTPLANE-CUTEND commands can be nested, even within loops.
						If the final CUTEND is missing, its corresponding CUTPLANE will be effective on all shapes until the end of the script.
					

					Note

						If CUTPLANE is not closed with CUTEND, all shapes may be entirely removed.
						That’s why you always get a warning message about missing CUTENDs.
					

					CUTPLANEs in macros affect shapes in the macro only, even if CUTEND is missing.

					If a macro is called between CUTPLANE and CUTEND, the shapes in the macro will be cut.

					Note
If you use CUTPLANE{2} with more than two parameters, then this will act like CUTPLANE.

					Note

						Prefer using CUTPLANE{3} instead of CUTPLANE.
						If you use CUTPLANE with 5 parameters, then the 4th parameter will be omitted.
						For CUTPLANE{3}, this parameter has effect independently from the 5th parameter.
					

				
				Example 1:

	
										CUTPLANE 2, 2, 4
CUTPLANE -2, 2, 4
CUTPLANE -2, -2, 4
CUTPLANE 2, -2, 4
ADD -1, -1, 0
BRICK 2, 2, 4
DEL 1
CUTEND
CUTEND
CUTEND
CUTEND

										
										[image: ../Images/3Dshapes_cutplane_ex1.png]

									

				Example 2:

	
										[image: ../Images/3Dshapes_cutplane_ex2_1.png]

										
										[image: ../Images/3Dshapes_cutplane_ex2_2.png]

									
	
										CUTPLANE
SPHERE 2
CUTEND

										
										CUTPLANE 1, 1, 0, 1
SPHERE 2
CUTEND

									

				Example 3:

	
										[image: ../Images/3Dshapes_cutplane_ex3_1.png]

										
										[image: ../Images/3Dshapes_cutplane_ex3_2.png]

									
	
										CUTPLANE 1.8, 1.8, 1.8
SPHERE 2
CUTEND

										
										CUTPLANE 1.8, 1.8, 1.8, 1
SPHERE 2
CUTEND

									

				Example 4:

	
										[image: ../Images/3Dshapes_cutplane_ex4_1.png]

										
										[image: ../Images/3Dshapes_cutplane_ex4_2.png]

									
	
										CUTPLANE 60
BRICK 2, 2, 2
CUTEND

										
										CUTPLANE -120
BRICK 2, 2, 2
CUTEND

									

			CUTPOLY

				
				CUTPOLY n,
 x1, y1, ... xn, yn
 [, x, y, z]
[statement1
statement2
...
statementn]
CUTEND

				
					
						Similarly to the CUTPLANE command, parameters of CUTPOLY refer to the current coordinate system.
						The polygon cannot be self-intersecting. The direction of cutting is the Z axis or an optional (x, y, z) vector can be specified.
						Mirroring transformations affect the cutting direction in an unexpected way - to get a more straightforward result,
						use the CUTFORM command.
					

				
				Example 1:

[image: ../Images/3Dshapes_cutpoly_ex1.png]
ROTX 90
MULZ -1
CUTPOLY 3,
 0.5, 1,
 2, 2,
 3.5, 1,
 -1.8, 0, 1
DEL 1
BPRISM_ "Brick-Red", "Brick-Red", "Brick-White",
 4, 0.9, 7,
 0.0, 0.0, 15,
 6.0, 0.0, 15,
 6.0, 3.0, 15,
 0.0, 3.0, 15
CUTEND

				Example 2:

	
										a=1.0
d=0.1
GOSUB "rect_cut"
ROTX 90
GOSUB "rect_cut"
DEL 1
ROTY -90
GOSUB "rect_cut"
DEL 1
BLOCK a, a, a
CUTEND
CUTEND
CUTEND
END
"rect_cut":
 CUTPOLY 4,
 d, d,
 a-d, d,
 a-d, a-d,
 d, a-d
 RETURN

										
										[image: ../Images/3Dshapes_cutpoly_ex2.png]

									

				Example 3:

	
										ROTX 90
FOR i=1 TO 3
 FOR j=1 TO 5
 CUTPOLY 4,
 0, 0, 1, 0,
 1, 1, 0, 1
 ADDX 1.2
 NEXT j
 DEL 5
 ADDY 1.2
NEXT i
DEL NTR()-1
ADD -0.2, -0.2, 0
BRICK 6.2, 3.8, 1
FOR k=1 TO 15
 CUTEND
NEXT k
DEL TOP

										
										[image: ../Images/3Dshapes_cutpoly_ex3.png]

									

			CUTPOLYA

				
				CUTPOLYA n, status, d,
 x1, y1, mask1, ... xn, yn, maskn [,
 x, y, z]
[statement1
statement2
...
statementn]
CUTEND

				
					
						Similar to the CUTPOLY definition, but with the possibility to control the visibility of the edges of the generated polygons.
						The cutting form is a half-infinite tube with the defined polygonal cross-section.
						If the end of the cutting form hangs down into the body, it will cut out the corresponding area.
					

					[image: ../Images/3Dshapes_cutpolya.png]

					
						status: controls the treatment of the generated cut polygons.

						1: use the attributes of the body for the generated polygons and edges,

						2: generated cut polygons will be treated as normal polygons.

					

					
						d: the distance between the local origin and the end of the half-infinite tube.

						0: means a cut with an infinite tube.

					

					
						maski: similar to the PRISM_ command.
maski = j1 + 2*j2 + 4*j3 + 64*j7, where each j can be 0 or 1.
	

						
						
						
						
					

				
				Example:

[image: ../Images/3Dshapes_cutpolya_ex.png]
ROTX 90
FOR i=1 TO 3
 FOR j=1 TO 5
 CUTPOLYA 6, 1, 0,
 1, 0.15, 5,
 0.15, 0.15, 900,
 0, 90, 4007,
 0, 0.85, 5,
 0.85, 0.85, 900,
 0, 90, 4007
 ADDX 1
 NEXT j
 DEL 5
 ADDY 1
NEXT i
DEL NTR()-1
ADD -0.2, -0.2, 0
BRICK 5.4, 3.4, 0.5
FOR k=1 TO 15
 CUTEND
NEXT k
DEL TOP

			CUTSHAPE

				
				CUTSHAPE d [, status]
[statement1 statement2 ... statementn]
CUTEND

				
					
						status: controls the treatment of the generated cut polygons. If not specified (for compatibility reasons) the default value is 3.
status = j1 + 2*j2, where each j can be 0 or 1.
	

						j1: use the attributes of the body for the generated polygons and edges,

						j2: generated cut polygons will be treated as normal polygons.

					

				
				Example:

	
										FOR i = 1 TO 5
 ADDX 0.4 * i
 ADDZ 2.5
 CUTSHAPE 0.4
 DEL 2
 ADDX 0.4
NEXT i
DEL TOP
BRICK 4.4, 0.5, 4
FOR i = 1 TO 5
	CUTEND
NEXT i

										
										[image: ../Images/3Dshapes_cutshape_ex.png]

									

			CUTFORM

				
				CUTFORM n, method, status,
 rx, ry, rz, d,
 x1, y1, mask1, [mat1,]
 ...
 xn, yn, maskn [, matn]

				
					
						Similar to the CUTPOLYA definition, but with the possibility
						to control the form and extent of the cutting body.
					

					
						method: controls the form of the cutting body.

						1: prism shaped,

						2: pyramidal,

						3:
							wedge-shaped cutting body.
							The direction of the wedge’s top edge is parallel to the Y axis and its position is in rx, ry, rz (ry is ignored).
						

					

					[image: ../Images/3Dshapes_cutform.png]

					
						status: Controls the extent of the cutting body and the treatment of the generated cut polygons and new edges.
status = j1 + 2*j2 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8 + 256*j9, where each j can be 0 or 1.
	

						j1: use the attributes of the body for the generated polygons and edges,

						j2: generated cut polygons will be treated as normal polygons,

						j4: define the limit of the cut (with j5),

						j5: define the limit of the cut (with j4):

						j6: generate a boolean intersection with the cutting body rather than a boolean difference. (can only be used with the CUTFORM command),

						j7: edges generated by the bottom of the cutting body will be invisible,

						j8: edges generated by the top of the cutting body will be invisible,

						j9: cutting shape has custom side materials (mati).

						j4 = 0 and j5 = 0: finite cut

						j4 = 0 and j5 = 1: semi-infinite cut

						j4 = 1 and j5 = 1: infinite cut

					

					
						rx, ry, rz:
							these three coordinates define the direction of cutting if the cutting form is prism-shaped;
							these three coordinates define the top point of the pyramid if the method of cutting is pyramidal;
							rx-rz coordinates define the end edge of the wedge and ry is ignored if the cutting from is wedge-shaped
						

					

					
						d:
							defines the distance along rx, ry, rz to the end of the cut.
							If the cut is infinite, this parameter has no effect.
							If the cut is finite, then the start of the cutting body will be at the local coordinate system
							and the body will end at a distance of d along the direction defined by rx, ry, rz.
						

						
							If the cut is semi-infinite, then the start of the cutting body will be at a distance of d
							along the direction defined by rx, ry, rz, and the direction of the semi-infinite cut will be
							in the opposite direction defined by rx, ry, rz.
						

					

					
						mask: defines the visibility of the edges of the cutting body.
mask = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 64*j7, where each j can be 0 or 1.
	

						j1: the polygon will create a visible edge upon entry into the body being cut,

						j2: the lengthwise edge of the cutting form will be visible,

						j3: polygon will create a visible edge upon exiting the body being cut,

						j4: the bottom edge of the cutting form will be visible,

						j5: the top edge of the cutting form will be visible,

						j7: controls the viewpoint dependent visibility of the lengthwise edge.

					

					
						mati: side material of the cutting shape (when status j9 = 1)

					

				
			
Solid Geometry Commands

				GDL is capable of performing specialized 3D operations between
				solids represented by groups. These operations can be one of the
				following:
			
	
								ADDGROUP
								
								forming the Boolean union of two solids
								
								[image: ../Images/3Dshapes_addgroup.png]

							
	
								SUBGROUP
								
								forming the Boolean difference of two solids
								
								[image: ../Images/3Dshapes_subgroup.png]

							
	
								ISECTGROUP
								
								forming the Boolean intersection of two solids
								
								[image: ../Images/3Dshapes_isectgroup.png]

							
	
								ISECTLINES
								
								calculating the intersection lines of two solids
								
								[image: ../Images/3Dshapes_isectlines.png]

							
	
								SWEEPGROUP
								
								sweeping a solid along a vector
								
								[image: ../Images/3Dshapes_sweepgroup.png]

							

				A GDL solid is composed of one or more lumps that appear as separated bodies in the model.
				A lump has exactly one outer shell and may contain voids. (Voids can be described as "negative" inner shells inside a lump.)
				The solid in the drawing below is composed of two lumps in such a way that one of them contains a void.
			
[image: ../Images/3Dshapes_GDL_solid.png]

				GDL bodies such as BLOCK, SPHERE, etc., appear as outer shells in groups.
				By means of the following construction the user is capable of putting more than one shell in a solid (note the BODY -1 statement):
			
GROUP "myGroup"
 BLOCK 1,1,1
 BODY -1
 ADDX 1
 BLOCK 1,1,1
ENDGROUP

				The above solid contains two lumps; each of them is composed of one shell.
				Voids can be defined by means of primitives, or can occur as a result of a Boolean difference
				(e.g. subtracting a small cube from the middle of a big one).
			

				See also the section called “Primitive Elements”.
			

				Although group operations are intended to work with solid objects, they can be applied to surfaces, wireframes or hybrid models, too.
				(Hybrid models are basically surfaces that may contain edges without neighboring faces.)
				The result of the operations on such models are summarized in the following tables:
			
Table 4.1. Union (base » tool)
	 	solid base	surface base	wireframe base	hybrid base
	solid tool	solid result	surface result (merging)	wireframe result (merging)	hybrid result (merging)
	surface tool	surface result (merging)	surface result (merging)	hybrid result (merging)	hybrid result (merging)
	wireframe tool	wireframe result (merging)	hybrid result (merging)	wireframe result (merging)	hybrid result (merging)
	hybrid tool	hybrid result (merging)	hybrid result (merging)	hybrid result (merging)	hybrid result (merging)

Table 4.2. Difference (base\tool)
	 	solid base	surface base	wireframe base	hybrid base
	solid tool	solid result	surface result	wireframe result	hybrid result
	surface tool	surface base (no effect)	surface base (no effect)	hybrid base (no effect)	hybrid base (no effect)
	wireframe tool	wireframe base (no effect)	hybrid base (no effect)	wireframe base (no effect)	hybrid base (no effect)
	hybrid tool	hybrid base (no effect)	hybrid base (no effect)	hybrid base (no effect)	hybrid base (no effect)

Table 4.3. Intersection (base « tool)
	 	solid base	surface base	wireframe base	hybrid base
	solid tool	solid result	surface result	wireframe result	hybrid result
	surface tool	surface result	empty result	empty result	empty result
	wireframe tool	wireframe result	empty result	empty result	empty result
	hybrid tool	hybrid result	empty result	empty result	empty result

Table 4.4. Intersection lines (base « tool)
	 	solid base	surface base	wireframe base	hybrid base
	solid tool	wireframe result	wireframe result	empty result	wireframe result
	surface tool	wireframe result	empty result	empty result	empty result
	wireframe tool	empty result	empty result	empty result	empty result
	hybrid tool	wireframe result	empty result	empty result	empty result

Table 4.5. Sweeping
	solid	surface	wireframe	hybrid
	valid result	surface base (no effect)	wireframe base (no effect)	hybrid base (no effect)

				Surfaces can be explicitly generated by using the MODEL SURFACE command,
				or implicitly by leaving out non-neighboring face polygons from the model.
				Wireframes are produced either by using the MODEL WIRE statement or by defining objects without face polygons.
				Hybrid models can only be generated indirectly by leaving out neighboring face polygons from the model.
			

				In the majority of the cases the required model is solid.
				GDL bodies appear as shells in group definitions, so in order to achieve fast and reliable operation,
				the geometric correctness of the generated shells is a critical issue.
				Handling degenerated objects loads the GDL engine and causes the desired operation to take more time to complete.
				The main rule to be considered regarding the efficient use of GDL group operations can be summarized as follows:
				model by conforming to existing physical presence of spatial objects. In practice this can be expressed by the following guidelines:
			
	Avoid self-intersecting objects.

	Avoid self-touching objects (apply small gaps).

	
						Avoid zero-sized portions of objects (apply small
						thickness).
					

				According to the above, these rules are to be followed for shells (defined by bodies), not for solids (defined by groups).
				(The solid produced by the script in the Group construction above is modeled properly,
				since the constituent shells touch each other but the shells, themselves, are geometrically correct.)
			
GROUP - ENDGROUP

				
				GROUP "name"
 [statement1 ... statementn]
ENDGROUP

				
					
						Group definition. All bodies between the corresponding GROUP - ENDGROUP statements will be part of the "name" group.
						Groups are not actually generated (placed), they can be used in group operations or placed explicitly using the PLACEGROUP command.
						Group definitions cannot be nested, but macro calls containing group definitions and PLACEGROUP commands using other groups can be included.
					

					
						Group names must be unique inside the current script.
						Transformations, cutplanes outside the group definition have no effect on the group parts;
						transformations, cutplanes used inside have no effect on the bodies outside the definition.
						Group definitions are transparent to attribute DEFINEs and SETs (pens, materials, fills);
						attributes defined/set before the definition and those defined/set inside the definition are all effective.
					

				
			ADDGROUP

				
				ADDGROUP (g_expr1, g_expr2)

				ADDGROUP{2} (g_expr1, g_expr2, edgeColor, materialId, materialColor)

			SUBGROUP

				
				SUBGROUP (g_expr1, g_expr2)

				SUBGROUP{2} (g_expr1, g_expr2, edgeColor, materialId, materialColor)

			ISECTGROUP

				
				ISECTGROUP (g_expr1, g_expr2)

				ISECTGROUP{2} (g_expr1, g_expr2, edgeColor, materialId, materialColor)

				
					
						g_expr1: identifier of the base group.

					

					
						g_expr2: identifier of the tool group.

					

					
						edgeColor: the color of the new edge when it differs from 0.

					

					
						materialId: the material of the new face when it differs from 0.

					

					
						materialColor: the color of the new face when the materialId is 0 and it differs from 0.

					

				
			ISECTLINES

				
				ISECTLINES (g_expr1, g_expr2)

			
				Group operations: addition, subtraction, intersection, intersection lines.
				The return value is a new group, which can be placed using the PLACEGROUP command,
				stored in a variable or used as a parameter in another group operation.
				Group operations can be performed between previously defined groups or groups result from any other group operation.
				g_expr1, g_expr2 are group type expressions.
				Group type expressions are either group names (string expressions)
				or group type variables or any combination of these in operations which result in groups.
				Note that the operations ADDGROUP, ISECTGROUP and ISECTLINES are symmetric in their parameterization while the order of parameter matters for SUBGROUP.
			
PLACEGROUP

				
				PLACEGROUP g_expr

				
					
						Placing a group is the operation in which bodies are actually generated.
						Cutplanes and transformations are effective, the group expression is evaluated and the resulting bodies are stored in the 3D data structure.
					

				
			KILLGROUP

				
				KILLGROUP g_expr

				
					
						Clears the bodies of the specified group from the memory.
						After a KILLGROUP operation the group becomes empty. The names of killed groups cannot be reused in the same script.
						Clearing is executed automatically at the end of the interpretation or when returning from macro calls.
						For performance reasons this command should be used when a group is no longer needed.
					

				
				Example:

	
										GROUP "box"
 BRICK 1, 1, 1
ENDGROUP
GROUP "sphere"
 ADDZ 1
 SPHERE 0.45
 DEL 1
ENDGROUP
GROUP "semisphere"
 ELLIPS 0.45, 0.45
ENDGROUP
GROUP "brick"
 ADD -0.35, -0.35, 0
 BRICK 0.70, 0.70, 0.35
 DEL 1
ENDGROUP
! Subtracting the "sphere" from the "box"
result_1=SUBGROUP("box", "sphere")
! Intersecting the "semisphere" and the "brick"
result_2=ISECTGROUP("semisphere", "brick")
! Adding the generated bodies
result_3=ADDGROUP(result_1, result_2)
PLACEGROUP result_3
KILLGROUP "box"
KILLGROUP "sphere"
KILLGROUP "semisphere"
KILLGROUP "brick"

										
										[image: ../Images/3Dshapes_group_ex.png]

									

			SWEEPGROUP

				
				SWEEPGROUP (g_expr, x, y, z)

				
					Returns a group that is created by sweeping the group parameter along the given direction.
					The command works for solid models only.

				
				SWEEPGROUP{2} (g_expr, x, y, z)

				
					
					The difference between SWEEPGROUP and SWEEPGROUP{2} is that in the former case the actual transformation matrix is applied again
					to the direction vector of the sweeping operation with respect to the current coordinate system.
					(In the case of SWEEPGROUP, the current transformation is applied to the direction vector twice with respect to the global coordinate system.)
					

				
				SWEEPGROUP{3} (g_expr, x, y, z, edgeColor, materialId, materialColor, method)

				
					This version adds a new method selection to SWEEPGROUP{2}.

					
						edgeColor: the color of the new edge when it differs from 0.

					

					
						materialId: the material of the new face when it differs from 0.

					

					
						materialColor: the color of the new face when the materialId is 0 and it differs from 0.

					

					
						method: controls the ending shape of the resulting body.

						0: same as SWEEPGROUP{2}, both ends come from the originating body,

						1: the start comes from the originating body, the sweep end is flat

					

				
				Example:

[image: ../Images/3Dshapes_sweepgroup_ex.png]
GROUP "the_sphere"
 SPHERE 1
ENDGROUP
PLACEGROUP SWEEPGROUP{2} ("the_sphere", 2, 0, 0)
addx 5
PLACEGROUP SWEEPGROUP{3} ("the_sphere", 2, 0, 0, 4, 0, 4, 1)
del 1

			CREATEGROUPWITHMATERIAL

				
				CREATEGROUPWITHMATERIAL (g_expr, repl_directive, pen, material)

				
					Returns a group that is created by replacing all pens and/or materials in group g_expr.

					
						g_expr: group expression identifying the base group.

					

					
						repl_directive:
repl_directive = j1 + 2*j2, where each j can be 0 or 1.
	

						j1: replace pen,

						j2: replace material.

					

					
						pen: replacement pen index.

					

					
						material: replacement material index.

					

				
			
Binary 3D

BINARY

				
				BINARY mode [, section]

				
					
						Special command to include inline binary objects into a GDL macro.
						A set of vertices, vectors, edges, polygons, bodies and materials is read from a special section of the library part file.
						These are transformed according to the current transformations and merged into the 3D model.
					

					The data contained in the binary section is not editable by the user.

					
						mode: defines pencolor and material attribute definition usage.

						0: the current PEN and MATERIAL settings are in effect,

						1:
							the current PEN and MATERIAL settings have no effect.
							The library part will be shown with the stored colors and material definitions. Surface appearance is constant,
						

						2: the stored PEN and MATERIAL settings are used, non-defined materials are replaced by current settings,

						3: the stored PEN and MATERIAL settings are used, non-defined materials are replaced by the stored default attributes.

					

					
						section: index of the binary part, from 1 to 16.

						0: you can refer simultaneously to all the existing binary parts,

						1: Only these sections can be saved from within GDL, BINARY commands without the section argument will also refer to this,

						2-16: can be used by third party tools.

					

					If you open files with a different data structure (e.g., DXF or ZOOM) their 3D description will be converted into binary format.

					
						You can save a library part in binary format from the main Library Part editing window through the Save as... command.
						If the Save in binary format checkbox is marked in the Save as... dialog box,
						the GDL text of the current library part will be replaced with a binary description.
					

					
						Hint: Saving the 3D model after a 3D cutaway operation in binary format will save the truncated model.
						This way, you can create cut shapes.
					

					You can only save your library part in binary format if you have already generated its 3D model.

					
						By replacing the GDL description of your library part with a binary description
						you can considerably reduce the 3D conversion time of the item.
						On the other hand, the binary 3D description is not parametric and takes more disk space than an algorithmic GDL script.
					

				
			
Chapter 5. 2D Shapes

			This chapter presents the commands used for generating shapes in 2D from simple forms such as lines and arcs to complex polygons and splines, and the definition of text elements in 2D. It also covers the way binary data is handled in 2D and the projection of the shape created by a 3D script into the 2D view, thereby ensuring coherence between the 3D and 2D appearance of objects. Further commands allow users to place graphic elements into element lists created for calculations.
		
Drawing Elements

HOTSPOT2

				
				HOTSPOT2 x, y [, unID [, paramReference, flags] [, displayParam]]

				
					[image: ../Images/2Dshapes_hotspot2.png]

					
						unID: the unique identifier of the hotspot in the 2D Script. Useful if you have a variable number of hotspots.

					

					
						paramReference: parameter that can be edited by this hotspot using the graphical hotspot based parameter editing method.

					

					
						displayParam:
							parameter to display in the information palette when editing the paramRefrence parameter.
							Members of arrays can be passed as well.
						

					

					
						See Chapter 6, Graphical Editing Using Hotspots for information on using HOTSPOT2.
					

				
			HOTLINE2

				
				HOTLINE2 x1, y1, x2, y2

				
					
						Status line definition between two points. Status line is a line which is recognized by the intelligent cursor but it is not visible in itself.
					

				
			HOTARC2

				
				HOTARC2 x, y, r, startangle, endangle

				
					
						Status arc definition with its centerpoint at (x, y) from the angle startangle to endangle, with a radius of r.
						Status arc is an arc which is recognized by the intelligent cursor but it is not visible in itself.
					

				
			LINE2

				
				LINE2 x1, y1, x2, y2

				
					Line definition between two points.

					[image: ../Images/2Dshapes_line2.png]

				
			RECT2

				
				RECT2 x1, y1, x2, y2

				
					Rectangle definition by two nodes. The two points are on the diagonal of the rectangle, the sides are parallel to current X and Y axes.

					[image: ../Images/2Dshapes_rect2.png]

				
			POLY2

				
				POLY2 n, frame_fill, x1, y1, ... xn, yn

				
					An open or closed polygon with n nodes.

					[image: ../Images/2Dshapes_poly2.png]

					
						n >= 2

					
					
						n: number of nodes.

					

					
						x1, y1, ... xn, yn: coordinates of each nodes.

					

					
						frame_fill:
frame_fill = j1 + 2*j2 + 4*j3, where each j can be 0 or 1.
	

						j1: draw contour

						j2: draw fill

						j3: close an open polygon

					

				
			POLY2_

				
				POLY2_ n, frame_fill, x1, y1, s1, ... xn, yn, sn

				
					[image: ../Images/2Dshapes_poly2_.png]

					
						Similar to the POLY2 command, but any of the edges can be omitted.
						If si = 0, the edge starting from the (xi,yi) apex will be omitted.
						If si = 1, the vertex should be shown.
						si = -1 is used to define holes directly.
						You can also define arcs and segments in the polyline using additional status code values.
					

					
						n >= 2

					
					
						n: number of nodes.

					

					
						x1, y1, ... xn, yn: coordinates of each nodes.

					

					
						frame_fill:
frame_fill = j1 + 2*j2 + 4*j3 + 8*j4 + 32*j6 + 64*j7, where each j can be 0 or 1.
	

						j1: draw contour,

						j2: draw fill,

						j3: close an open polygon,

						j4: local fill orientation,

						j6: fill is cut fill (default is drafting fill),

						j7: fill is cover fill (only if j6 = 0, default is drafting fill).

					

					
						si: Status values:
si = j1 + 16*j5 + 32*j6, where each j can be 0 or 1.
	

						j1: next segment is visible,

						j5: next segment is inner line (if 0, generic line),

						j6: next segment is contour line (effective only if j5 is not set),

						-1: end of a contour.

					

					
						Default line property for POLY2_ lines is 0 (generic line), the LINE_PROPERTY command has no effect on POLY2_ edges.
						Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
					

					
						See the section called “Additional Status Codes” for details.
					

				
			POLY2_A

				
				POLY2_A n, frame_fill, fill_pen,
 x1, y1, s1, ..., xn, yn, sn

			POLY2_B

				
				POLY2_B n, frame_fill,
 fill_pen, fill_background_pen,
 x1, y1, s1, ..., xn, yn, sn

				
					
						Advanced versions of the POLY2_ command, with additional parameters: the fill pen and the fill background pen.
						All other parameters are similar to those described at the POLY2_ command.
					

					
						fill_pen: fill pencolor number.

					

					
						fill_background_pen: fill background pencolor number.

					

					Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

					
						See the section called “Additional Status Codes” for details.
					

				
			POLY2_B{2}

				
				POLY2_B{2} n, frame_fill,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY, fillAngle,
 x1, y1, s1, ..., xn, yn, sn

				
					Advanced version of the POLY2_B command where the hatching origin and direction can be defined.

					
						frame_fill:
frame_fill = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
	

						j1: draw contour

						j2: draw fill

						j3: close an open polygon

						j4: local fill orientation

						j5: global fill origin (effective only if j4 is set)

						j6: fill in cut category (distinctive with j7, drafting category if none is set)

						j7: fill in cover category (distinctive with j6, drafting category if none is set).

					

					
						fillOrigoX: X coordinate of the fill origin.

					

					
						fillOrigoY: Y coordinate of the fill origin.

					

					
						fillAngle: direction angle of fill.

					

					Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

					
						See the section called “Additional Status Codes” for details.
					

				
			POLY2_B{3}

				
				POLY2_B{3} n, frame_fill,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY,
 mxx, mxy, myx, myy, x1, y1, s1, ..., xn, yn, sn

				
					Advanced version of the POLY2_B command, where the orientation of the fill can be defined using a matrix.

					
						frame_fill:
frame_fill = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8, where each j can be 0 or 1.
	

						j1-j7: similar as for previous POLY2_ commands,

						
						
						
						
						
						
						
						j8: use sloped fill.

					

					
						mxx, mxy, myx, myy: if j8 is set, this matrix defines the orientation of the fill.

					

					Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

					
						See the section called “Additional Status Codes” for details.
					

				
			POLY2_B{4}

				
				POLY2_B{4} n, frame_fill,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY,
 mxx, mxy, myx, myy,
 gradientInnerRadius,
 x1, y1, s1, ..., xn, yn, sn

				
					Advanced version of POLY2_ B{3}, where the inner radius of radial gradient fill can be set.

					
						gradientInnerRadius: inner radius of the gradient in case radial gradient fill is selected for the polygon.

					

				
			POLY2_B{5}

				
				POLY2_B{5} n, frame_fill, fillcategory, distortion_flags,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY,
 mxx, mxy, myx, myy,
 gradientInnerRadius,
 x1, y1, s1, ..., xn, yn, sn

				
					Advanced version of POLY2_ B{4}, where fill distortion can be controlled in an enhanced way.

					
						frame_fill:
frame_fill = j1 + 2*j2 + 4*j3, where each j can be 0 or 1.
	

						j1: draw contour

						j2: draw fill

						j3: close an open polygon.

					

					
						fillcategory:

						0: Draft,

						1: Cut,

						2: Cover.

					

					
						distortion_flags:
distortion_flags = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
	

						
							The valid value for distortion_flags is between 0 and 127. Don’t use value out of this range.
						

						j1:
							the fill origin’s X coordinate is the global origin’s X coordinate, meaningful only when j4 is set.
							The fillOrigo is the origin (0,0) projected on the line of the (mxx, mxy) vector,
						

						j2: the fill origin’s Y coordinate is the global origin’s Y coordinate, meaningful only when j4 is set,

						j3: create circular distortion using the innerRadius parameter,

						j4: use local orientation, use the distortion matrix (mij parameters),

						j5: (effective for symbol fills only) reset the pattern’s X size to the defined X vector’s length (mxx, mxy),

						j6: (effective for symbol fills only) reset the pattern’s Y size to the defined Y vector’s length (myx, myy),

						j7: (effective for symbol fills only) keep proportion of symbol fill pattern; effective only if one of j5 and j6 is set.

					

					
						innerRadius:
							radius for circular fill distortion;
							the origin of the base circle will be placed on the Y fill axis in the (0, -innerRadius) position.
						

					

				
			ARC2

				
				ARC2 x, y, r, alpha, beta

				
					An arc with its centerpoint at (x, y) from the angle alpha to beta, with a radius of r.

					Alpha and beta are in degrees.

					[image: ../Images/2Dshapes_arc2.png]

				
			CIRCLE2

				
				CIRCLE2 x, y, r

				
					A circle with its center at (x, y), with a radius of r.

					[image: ../Images/2Dshapes_circle2.png]

				
			SPLINE2

				
				SPLINE2 n, status, x1, y1,
 angle1, ..., xn, yn, anglen

				
					[image: ../Images/2Dshapes_spline2.png]

					Spline, with n control points. The tangent of the spline in the control point (xi, yi) is defined by anglei, the angle with the x axis in degrees.

					
						n >= 2

					
					
						si: Status values:

						0: default,

						1: closed spline; the last and first nodes of the spline will become connected, thus closing the spline,

						2:
							automatically smoothed spline;
							the angle parameter value of the nodes between the first and the last node is not used when generating the spline.
							An internal autosmoothing algorithm is used.
						

					

				
				Example 1:

	
										SPLINE2 5, 2,
 0, 0, 60,
 1, 2, 30,
 1.5, 1.5, -30,
 3, 4, 45,
 4, 3, -45

										
										[image: ../Images/2Dshapes_spline2_ex1.png]

									

				Example 2:

	
										n = 5
FOR i = 1 TO n
 SPLINE2 4, 0,
 0.0, 2.0, 135.0,
 -1.0, 1.8, 240.0,
 -1.0, 1.0, 290.0,
 0.0, 0.0, 45.0
 MUL2 -1.0, 1.0
 SPLINE2 4, 0,
 0.0, 2.0, 135.0,
 -1.0, 1.8, 240.0,
 -1.0, 1.0, 290.0,
 0.0, 0.0, 45.0
 DEL 1
 SPLINE2 4, 0,
 0.0, 2.0, 100.0,
 0.0, 2.5, 0.0,
 0.0, 2.4, 270.0,
 0.0, 2.0, 270.0
 ADD2 2.5, 0
NEXT i

										
										[image: ../Images/2Dshapes_spline2_ex2.png]

									

			SPLINE2A

				
				SPLINE2A n, status, x1, y1, angle1, length_previous1, length_next1,
 ...
 xn, yn, anglen, length_previousn,
 length_nextn

				
					[image: ../Images/2Dshapes_spline2A.png]

					Extension of the SPLINE2 command (Bézier spline), used mainly in automatic 2D script generation because of its complexity.

					
						For more details, see “Lines / Drawing Splines” in the Documentation chapter of the ArchiCAD Help.
					

					
						si: Status values:

						0: default,

						1: closed spline; the last and first nodes of the spline will become connected, thus closing the spline,

						2:
							automatically smoothed spline;
							the angle, length_previousi and length_nexti parameter values of the nodes
							between the first and the last node are not used when generating the spline. An internal autosmoothing algorithm is used.
						

					

					
						xi, yi: control point coordinates.

					

					
						length_previousi, length_nexti: tangent lengths for the previous and the next control points.

					

					
						anglei: tangent direction angle.

					

				
				Example:

	
										SPLINE2A 9, 2,
 0.0, 0.0, 0.0, 0.0, 0.0,
 0.7, 1.5, 15, 0.9, 1.0,
 1.9, 0.8, 72, 0.8, 0.3,
 1.9, 1.8, 100, 0.3, 0.4,
 1.8, 3.1, 85, 0.4, 0.5,
 2.4, 4.1, 352, 0.4, 0.4,
 3.5, 3.3, 338, 0.4, 0.4,
 4.7, 3.7, 36, 0.4, 0.8,
 6.0, 4.6, 0, 0.0, 0.0

										
										[image: ../Images/2Dshapes_spline2A_ex.png]

									

			PICTURE2

				
				PICTURE2 expression, a, b, mask

			PICTURE2{2}

				
				PICTURE2{2} expression, a, b, mask

				
					
						Can be used in 2D similarly to the PICTURE command in 3D.
						Unlike in 3D, the mask values have no effect on 2D pictures.
					

					
						A string type expression means a file name, a numerical expression means an index of a picture stored in the library part.
						A 0 index is a special value, it refers to the preview picture of the library part.
						For PICTURE2{2} mask = 1 means that exact white colored pixels are transparent.
					

					Other pictures can only be stored in library parts when saving the project or selected elements containing pictures as GDL objects.

				
			
Text Element

TEXT2

				
				TEXT2 x, y, expression

				
					The value of the calculated numerical or string type expression is written in the set style at the x, y coordinates.

					
						See also the [SET] STYLE command and the DEFINE STYLE command.
					

					[image: ../Images/2Dshapes_text2.png]

				
			RICHTEXT2

				
				RICHTEXT2 x, y, textblock_name

				
					Place a previously defined TEXTBLOCK.

					
						For more details, see the TEXTBLOCK command.
					

					
						x, y: X-Y coordinates of the richtext location.

					

					
						textblock_name: the name of a previously defined TEXTBLOCK

					

				
			
Binary 2D

FRAGMENT2

				
				FRAGMENT2 fragment_index, use_current_attributes_flag

				FRAGMENT2 ALL, use_current_attributes_flag

				
					
						The fragment with the given index is inserted into the 2D Full View with the current transformations.
						If ALL is specified, all fragments are inserted.
					

					
						use_current_attributes_flag: defines whether or not the current attributes will be used.

						0: the fragment appears with the color, line type and fill type defined for it,

						1: the current settings of the script are used instead of the color, line type and fill type of the fragment.

					

				
			
3D Projections in 2D

PROJECT2

				
				PROJECT2 projection_code, angle, method

			PROJECT2{2}

				
				PROJECT2{2} projection_code, angle, method [, backgroundColor,
 fillOrigoX, fillOrigoY, filldirection]

				
					
						Creates a projection of the 3D script in the same library part and adds the generated lines to the 2D parametric symbol.
						The 2nd version PROJECT2{2}, together with a previous [SET] FILL command,
						allows the user to control the fill background, origin and direction of the resulting drawing from the 2D script.
						The SET FILL 0 shortcut to get an empty fill does not work in this case,
						you need to reference an actual empty fill.
					

					
						projection_code: the type of projection.

						3: Top view,

						4: Side view,

						6: Frontal axonometry,

						7: Isometric axonometry,

						8: Monometric axonometry,

						9: Dimetric axonometry,

						-3: Bottom view,

						-6: Frontal bottom view,

						-7: Isometric bottom view,

						-8: Monometric bottom view,

						-9: Dimetric bottom view.

					

					
						angle: the azimuth angle set in the 3D Projection Settings dialog box.

					

					
						method: the chosen imaging method.

						1: wireframe,

						2: hidden lines (analytic),

						3: shading,

						16: addition modifier: draws vectorial hatches (effective only in hidden line and shaded mode),

						32: addition modifier: use current attributes instead of attributes from 3D (effective only in shading mode),

						64: addition modifier: local fill orientation (effective only in shading mode),

						128: addition modifier: lines are all inner lines (effective only together with 32). Default is generic,

						256: addition modifier: lines are all contour lines (effective only together with 32, if 128 is not set). Default is generic,

						512: addition modifier: fills are all cut (effective only together with 32). Default is drafting fills,

						1024: addition modifier: fills are all cover (effective only together with 32, if 512 is not set). Default is drafting fills.

					

					
						BackgroundColor: background color of the fill.

					

					
						fillOrigoX: X coordinate of the fill origin.

					

					
						fillOrigoY: Y coordinate of the fill origin.

					

					
						filldirection: direction angle of fill.

					

					Note
the [SET] FILL command is effective for PROJECT2{2}

					
						Compatibility note: using PROJECT2 with method bit 32 not set and method bit 3 set (shading),
						the model being cut with the CUTPOLYA command without status bit 2 set (generating cut polygons) resulting cut polygon attributes can be different.
						Cut polygons will be generated with attributes defined by the SECT_FILL command in the 3D script.
					

				
				Example:

	
										2D
									
	
										PROJECT2 3, 270, 2

LINE_TYPE "DASHED"
ARC2 0, 0, A-B/3, 0, E

ROT2 E
ADD2 A-B/3, 0
LINE2 0, 0, -0.05, -0.1
LINE2 0, 0, 0.05, -0.1

DEL 2

										
										[image: ../Images/2Dshapes_project2_2_1.png]

									
	
										3D
									
	
										FOR i=1 TO n
	prism 4, D,
		 -B/3, -B/2,
		 -B/3, B/2,
		A-B/3, B/8,
		A-B/3, -B/8
	ADDZ D
	ROTz E/(n-1)
NEXT i

DEL n*2

										
										[image: ../Images/2Dshapes_project2_2_2.png]

									

			PROJECT2{3}

				
				PROJECT2{3} projection_code, angle, method, parts [, backgroundColor,
 fillOrigoX, fillOrigoY, filldirection][[,]
 PARAMETERS name1=value1, ... namen=valuen]

				
					
						Creates a projection of the 3D script in the same library part and adds the generated lines to the 2D parametric symbol.
						The third version, PROJECT2{3}, adds the possibility to define which parts of the projected model are required
						and to control separately the attributes of the cut and view part, including the line type.
						You can also generate the projection with actual parameters set in the command.
					

					
						method: the chosen imaging method.

						1: wireframe,

						2: hidden lines (analytic),

						3: shading,

						16: addition modifier: draws vectorial hatches (effective only in hidden line and shaded mode),

						32: addition modifier: use current attributes instead of attributes from 3D (effective only in shading mode),

						64: addition modifier: local fill orientation (effective only in shading mode),

						128: addition modifier: lines are all inner lines (effective only together with 32). Default is generic.

						256: addition modifier: lines are all contour lines (effective only together with 32, if 128 is not set). Default is generic.

						512: addition modifier: fills are all cut (effective only together with 32). Default is drafting fills.

						1024: addition modifier: fills are all cover (effective only together with 32, if 512 is not set). Default is drafting fills.

						2048: addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the view part of the projection. By default they are effective for all parts.

						4096: addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the cut part of the projection. By default they are effective for all parts.

						8192: addition modifier: cut fills are slanted

					

					Known limitation: lines of the cut part cannot be treated separately, only all lines together can be set to be inner or contour.

					
						parts: defines the parts to generate. The 15 value means all parts.
parts = j1 + 2*j2 + 4*j3 + 8*j4, where each j can be 0 or 1.
	

						
							The j1, j2, j3, j4 numbers represent whether the corresponding parts of the projected model are present (1) or omitted (0):
						

						j1: cut polygons (with default fill attributes defined by SECT_FILL) (effective only in shading mode),

						j2: cut polygon edges,

						j3: view polygons,

						j4: view polygon edges.

					

				
			
Drawings in the List

These commands only take effect when a list of elements is created in ArchiCAD.

				When the library part is a special property type library part and is in some way associated to a library part (Object, Door, Window or Light)
				placed on the floor plan, including the following commands in its 2D script will refer to the 2D and 3D part of that library part.
				This is a virtual reference that is resolved during the listing process, using the 2D or 3D script of the currently listed element.
			
DRAWING2

				
				DRAWING2 [expression]

				
					
						Depending on the value of the expression, creates a drawing of the library part (expression = 0, default)
						or the label of the element (expression = 1) associated with the Property Object containing this command.
					

				
			DRAWING3

				
				DRAWING3 projection_code, angle, method

			DRAWING3{2}

				
				DRAWING3{2} projection_code, angle, method [, backgroundColor,
 fillOrigoX, fillOrigoY, filldirection]

				
					
						Similarly to PROJECT2, creates a projection of the 3D script of the library part associated with the property library part containing this command.
						All parameters are similar to those of PROJECT2 and PROJECT2{2}.
					

					
						method: New method flags in DRAWING3{2}

						3: shading,

						32: use current attributes instead of attributes from 3D,

						64: local fill orientation.

					

				
			DRAWING3{3}

				
				DRAWING3{3} projection_code, angle, method, parts [, backgroundColor,
 fillOrigoX, fillOrigoY, filldirection][[,]
 PARAMETERS name1=value1, ... namen=valuen]

				
					
						Similarly to PROJECT2, creates a projection of the 3D script of the library part associated with the property library part containing this command.
						All parameters are similar to those of PROJECT2, PROJECT2{2} and PROJECT2{3}.
					

					
						method: New method flags in DRAWING3{3}

						2048:
							addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only
							for the view part of the projection. By default they are effective for all parts,
						

						4096:
							addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only
							for the cut part of the projection. By default they are effective for all parts,
						

						8192: addition modifier: cut fills are slanted.

					

				
			
Chapter 6. Graphical Editing Using Hotspots

Hotspot-based interactive graphical editing of length and angle type GDL parameters.
HOTSPOT x, y, z [, unID [, paramReference, flags] [, displayParam]]
HOTSPOT2 x, y [, unID [, paramReference, flags] [, displayParam]]

			unID: unique identifier, which must be unique among the hotspots defined in the library part.

		

			paramReference: parameter that can be edited by this hotspot using the graphical hotspot based parameter editing method.

		

			displayParam:
				parameter to display in the information palette when editing the paramRefrence parameter.
				Members of arrays can be passed as well.
			

		

			Examples of valid arguments:
		
D, Arr[5], Arr[2*I+3][D+1], etc.

			flags: hotspot’s type + hotspot’s attribute:

		

			type:

			1: length type editing, base hotspot,

			2: length type editing, moving hotspot,

			3: length type editing, reference hotspot (always hidden),

			4: angle type editing, base hotspot,

			5: angle type editing, moving hotspot,

			6: angle type editing, center of angle (always hidden),

			7: angle type editing, reference hotspot (always hidden).

		

			attribute: Can be zero or:
attribute = 128*j8 + 256*j9 + 512*j10, where each j can be 0 or 1.
	

			j8: hide hotspot (meaningful for types: 1,2,4,5),

			j9: editable base hotspot (for types: 1,4),

			j10: reverse the angle in 2D (for type 6).

		

			To edit a length type parameter, three hotspots must be defined with types 1, 2 and 3.
			The positive direction of the editing line is given by the vector from the reference hotspot to the base hotspot.
			The moving hotspot must be placed along this line at a distance determined by the associated parameter’s value, measured from the base hotspot.
		
[image: ../Images/GraphEd_hotspotLength.png]

			To edit an angle type parameter, in 3D four hotspots must be defined with types 4, 5, 6 and 7.
			The plane of the angle is perpendicular to the vector that goes from the center hotspot to the reference hotspot.
			The positive direction in measuring the angle is counter-clockwise if we look at the plane from the reference hotspot.
			In 2D the plane is already given, so the reference hotspot is ignored, and the positive direction of measuring the angle is by default counter-clockwise.
			This can be changed to clockwise by setting the 512 attribute flag for the center hotspot (type 6).
			To be consistent, the vectors from the center hotspot to the moving
			and the base hotspots must be perpendicular to the vector from the center to the reference hotspot.
			The moving hotspot must be placed at an angle determined by the associated parameter measured from the base hotspot around the center hotspot.
		
[image: ../Images/GraphEd_hotspotAngle.png]

			If several sets of hotspots are defined to edit the same parameter, hotspots are grouped together in the order of the execution of the hotspot commands.
			If the editable attribute is set for a base hotspot, the user can also edit the parameter by dragging the base hotspot.
			Since the base hotspot is supposed to be fixed in the object’s coordinate frame
			(i.e. its location must be independent of the parameter that is attached to it), the whole object is dragged or rotated along with the base point.
			(As the parameter’s value is changing, the moving hotspot will not change its location.)
		

			Two length type sets of hotspots can be combined to allow editing of two parameters with only one dragging.
			If two are combined, the motion of the hotspot is no longer constrained to a line
			but to the plane determined by the two lines of each set of length editing hotspots.
			In 3D, the combination of three sets of length editing hotspots allows the hotspot to be placed anywhere in space.
			The two lines must not be parallel to each other, and the three lines must not be on the same plane.
			A combined parameter editing operation is started if,
			at the location of the picked point, there are two editable hotspots (moving or editable base) with different associated parameters.
			If parameters are designed for combined editing, the base and reference hotspots are not fixed in the object’s coordinate frame,
			but must move as the other parameter’s value changes.
		

			See illustration and example 2.
		
Example 1:

				Angle editing in 2D
			
LINE2 0, 0, A, 0
LINE2 0, 0, A*COS(angle), A*SIN(angle)
ARC2 0, 0, 0.75*A, 0, angle
HOTSPOT2 0, 0, 1, angle, 6
HOTSPOT2 0.9*A, 0, 2, angle, 4
HOTSPOT2 0.9*A*COS(angle), 0.9*A*SIN(angle), 3,
angle, 5

Example 2:

				Combined length type editing with 2 parameters in 2D
			
	
								[image: ../Images/GraphEd_hotspot2_ex2_1.png]

								
								[image: ../Images/GraphEd_hotspot2_ex2_2.png]

							

RECT2 0, 0, A, B
RECT2 0, 0, sideX, sideY
HOTSPOT2 sideX, 0, 1, sideY, 1
HOTSPOT2 sideX, -0.1, 2, sideY, 3
HOTSPOT2 sideX, sideY, 3, sideY, 2
HOTSPOT2 0, sideY, 4, sideX, 1
HOTSPOT2 -0.1, sideY, 5, sideX, 3
HOTSPOT2 sideX, sideY, 6, sideX, 2

Example 3:

				Simple length type editing with 1 parameter
			
[image: ../Images/GraphEd_hotspot2_ex3.png]
!2D SCRIPT:
HOTSPOT2 -1, 0, 1
HOTSPOT2 1, 0, 2
HOTSPOT2 0, 0, 3, corner_y, 1+128
HOTSPOT2 0, -1, 4, corner_y, 3
HOTSPOT2 0, corner_y, 5, corner_y, 2
LINE2 -1, 0, 1, 0
LINE2 -1, 0, 0, corner_y
LINE2 1, 0, 0, corner_y
!3D SCRIPT:
HOTSPOT -1, 0, 0, 1
HOTSPOT -1, 0, 0.5, 2
HOTSPOT 1, 0, 0, 3
HOTSPOT 1, 0, 0.5, 4
HOTSPOT 0, 0, 0, 5, corner_y, 1+128
HOTSPOT 0, -1, 0, 6, corner_y, 3
HOTSPOT 0, corner_y, 0, 7, corner_y, 2
HOTSPOT 0, 0, 0.5, 8, corner_y, 1+128
HOTSPOT 0, -1, 0.5, 9, corner_y, 3
HOTSPOT 0, corner_y, 0.5, 10, corner_y, 2

PRISM_ 4, 0.5,
 -1, 0, 15,
 1, 0, 15,
 0, corner_y, 15,
 -1, 0, -1

Example 4:

				Combined length type editing with 2 parameters:
			
[image: ../Images/GraphEd_hotspot2_ex4.png]
!2D SCRIPT:
HOTSPOT2 -1, 0, 1
HOTSPOT2 1, 0, 2
HOTSPOT2 corner_x, 0, 3, corner_y, 1+128
HOTSPOT2 corner_x, -1, 4, corner_y, 3
HOTSPOT2 corner_x, corner_y, 5, corner_y, 2
HOTSPOT2 0, corner_y, 3, corner_x, 1+128
HOTSPOT2 -1, corner_y, 4, corner_x, 3
HOTSPOT2 corner_x, corner_y, 5, corner_x, 2
LINE2 -1, 0, 1, 0
LINE2 -1, 0, corner_x, corner_y
LINE2 1, 0, corner_x, corner_y
!3D SCRIPT:
HOTSPOT -1, 0, 0, 1
HOTSPOT -1, 0, 0.5, 2
HOTSPOT 1, 0, 0, 3
HOTSPOT 1, 0, 0.5, 4
HOTSPOT corner_x, 0, 0, 5, corner_y, 1+128
HOTSPOT corner_x, -1, 0, 6, corner_y, 3
HOTSPOT corner_x, corner_y, 0, 7, corner_y, 2
HOTSPOT 0, corner_y, 0, 8, corner_x, 1+128
HOTSPOT -1, corner_y, 0, 9, corner_x, 3
HOTSPOT corner_x, corner_y, 0, 10, corner_x, 2
HOTSPOT corner_x, 0, 0.5, 11, corner_y, 1+128
HOTSPOT corner_x, -1, 0.5, 12, corner_y, 3
HOTSPOT corner_x, corner_y, 0.5, 13, corner_y, 2
HOTSPOT 0, corner_y, 0.5, 14, corner_x, 1+128
HOTSPOT -1, corner_y, 0.5, 15, corner_x, 3
HOTSPOT corner_x, corner_y, 0.5, 16, corner_x, 2
PRISM_ 4, 0.5,
 -1, 0, 15,
 1, 0, 15,
 corner_x, corner_y, 15,
 -1, 0, -1

Chapter 7. Status Codes

Status codes introduced in the following pages allow users to create segments and arcs in planar polylines using special constraints.
Planar polylines with status codes at nodes are the basis of many GDL elements:
			POLY2_,
			POLY2_A,
			POLY2_B,
			POLY2_B{2},
			POLY2_B{3},
			POLY2_B{4},
			POLY2_B{5},
			POLY_,
			PLANE_,
			PRISM_,
			CPRISM_,
			BPRISM_,
			FPRISM_,
			HPRISM_,
			SPRISM_,
			SLAB_,
			CSLAB_,
			CROOF_,
			EXTRUDE,
			PYRAMID,
			REVOLVE,
			SWEEP,
			TUBE,
			TUBEA
		
Status codes allow you:
	to control the visibility of planar polyline edges

	to define holes in the polyline

	to control the visibility of side edges and surfaces

	to create segments and arcs in the polyline

Status Code Syntax

				si: The si number is a binary integer (between 0 and 127) or -1.
si = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7[+ a_code], where each j can be 0 or 1.
	

				The j1, j2, j3, j4 numbers represent whether the vertices and the sides are present (1) or omitted (0):

				j1: lower horizontal edge,

				j2: vertical edge,

				j3: upper horizontal edge,

				j4: side face,

				j5: horizontal edge in line elimination (for PRISM_ shapes only),

				j6: vertical edge in line elimination (for PRISM_ shapes only),

				j7: special additional status value effective only when j2=1 and
					controls the viewpoint dependent visibility of the current vertical edge,
				

				a_code: additional status code (optional), which allows you to create segments and arcs in the polyline,

				j2=0: the vertical edge is always invisible

				
					j2=1 and j7=1: the vertical edge is only visible when it is a
					contour observed from the current direction of view
				

				j2=1 and j7=0: the vertical edge is always visible

				Possible status values (the heavy lines denote visible edges):

				[image: ../Images/StatCod_VisibleInvisible.png]

			

				si=-1 is used to define holes directly into the prism.
				It marks the end of the contour and the beginning of a hole inside of the contour.
				It is also used to indicate the end of one hole’s contour and the beginning of another.
				Coordinates before that value must be identical to the coordinates of the first point of the contour/hole.
				If you have used the -1 mask value, the last mask value in the parameter list must be -1, marking the end of the last hole.
			
The holes must be disjoint and internal intersections are forbidden in the polygon for a correct shading/rendering result.

Additional Status Codes

				The following additional status codes allow you to create segments and arcs in the polyline using special constraints.
				They refer to the next segment or arc.
				Original status code(s) are only effective where they are specified (a "+s" is included after the additional code).
			
Note

				Resolution of arcs is controlled by directives described in the section called “Directives for 3D and 2D Scripts”.
				In case of the POLY2_ command, if the resolution is greater than 8, it generates real arcs; otherwise all generated arcs will be segmented.
			
Previous part of the polyline: current position and tangent is defined

[image: ../Images/StatCod_prevPart.png]

Segment by absolute endpoint

x, y, s
where 0 < s < 100
[image: ../Images/StatCod_absEndpoint.png]

Segment by relative endpoint

dx, dy, 100+s,
where 0 < s < 100
[image: ../Images/StatCod_relEndpoint.png]

Segment by length and direction

l, a, 200+s,
where 0 < s < 100
[image: ../Images/StatCod_lengthDirection.png]

Tangential segment by length

l, 0, 300+s,
where 0 < s < 100
[image: ../Images/StatCod_tangLength.png]

Set start point

x1, y1, 600,
[image: ../Images/StatCod_startPoint.png]

Close polyline

0, 0, 700,
[image: ../Images/StatCod_close.png]

Set tangent

ex, ey, 800,
[image: ../Images/StatCod_tangent.png]

Set centerpoint

x0, y0, 900,
[image: ../Images/StatCod_centerPoint.png]

Tangential arc to endpoint

x, y, 1000+s,
where 0 < s < 100
[image: ../Images/StatCod_tangArcEnd.png]

Tangential arc by radius and angle

r, a, 2000+s,
where 0 < s < 100
[image: ../Images/StatCod_tangArcRadAng.png]

Arc using centerpoint and point on the final radius

x, y, 3000+s,
where 0 < s < 100
[image: ../Images/StatCod_arcCentRad.png]

Arc using centerpoint and angle

0, a, 4000+s,
where 0 < s < 100
[image: ../Images/StatCod_arcCentAng.png]

Full circle using centerpoint and radius

r, 360, 4000+s,
where 0 < s < 100
[image: ../Images/StatCod_circleCentRad.png]
In this case the s status refers to the whole circle.

					All angle values are in degrees. Omitted coordinates marked by 0
					(for codes 300, 700, 4000) can have any value.
				

Example 1:

	
									[image: ../Images/StatCod_addStatCod_ex1_1.png]

									
									[image: ../Images/StatCod_addStatCod_ex1_2.png]

								

EXTRUDE 21, 0, 0, 3, 1+2+4+16+32,
 0, 0, 0,
 7, 0, 0,
 7, 3, 1,
 6, 3, 1000, ! tangential arc to endpoint
 5, 3, 1001, ! tangential arc to endpoint
 1, 90, 2000, ! tangential arc by radius and angle
 2, 3, 1001, ! tangential arc to endpoint
 1, 3, 900, ! set centerpoint
 1, 2, 3000, ! arc using startpoint, centerpoint and point on final radius
 1, 2.5, 900, ! set centerpoint
 0, -180, 4001, ! arc using start point, centerpoint and angle
 1, 5, 1000, !tangential arc to endpoint
 -1, 0, 100, ! segment by (dx, dy)
 2, 225, 200, ! segment by (len, angle)
 -1, 0, 800, ! set tangent
 -1, 0, 1000, ! tangential arc to endpoint
 0, 0, -1, ! end of contour
 1, 1, 900, ! set centerpoint
 0.5, 360, 4000, ! full circle by centerpoint and radius
 3.5, 1.5, 900, ! set centerpoint
 1, 360, 4001 ! full circle by centerpoint and radius

Example 2:

	
									EXTRUDE 2+5+10+10+2, 0, 0, 3, 1+2+4+16+32,
 0, 0, 900,
 3, 360, 4001,
 2.5, -1, 0,
 2.5, 1, 0,
 1.5, 1, 1,
 1.5, -1, 1001,
 2.5, -1, -1,
 0, 2.5, 600,
 0, -1, 800,
 1, 1.5, 1001,
 -1, 0, 800,
 0, 0.5, 1001,
 0, 1, 800,
 -1, 1.5, 1001,
 1, 0, 800,
 0, 2.5, 1001,
 0, 2.5, 700,
 -1.5, 0, 900,
 -2.5, 0, 600,
 -2.5, 1, 3000,
 -2.5, 1, 0,
 -1.5, 1, 0,
 -1.5, -1, 1001,
 -2.5, -1, 0,
 SQR(2)-1, 45, 200,
 -2.5, 0, 3000,
 -2.5, 0, 700,
 0, -1.5, 900,
 1, 360, 4000

									
									[image: ../Images/StatCod_addStatCod_ex2.png]

								

Example 3:

[image: ../Images/StatCod_addStatCod_ex3.png]
EXTRUDE 3, 1, 1, 3, 1+2+4+16+32,
 0, 0, 900,
 3, 360, 4001,
 2, 360, 4000

Example 4:

[image: ../Images/StatCod_addStatCod_ex4.png]
ROTY-90
REVOLVE 9, 180, 16+32,
 7, 1, 0,
 6, 1, 0,
 5.5, 2, 0,
 5, 1, 0,
 4, 1, 0,
 3, 1, 900, ! set centerpoint
 0, 180, 4001, ! arc using startpoint, centerpoint and angle
 2, 1, 0,
 1, 1, 0

Chapter 8. Attributes

			In the first part of this chapter, directives influencing the interpretation of GDL statements are presented.
			Directives may define the smoothness used for cylindrical elements, representation mode in the 3D view or the assignment of an attribute
			(color, material, text style, etc.) for the subsequent shapes.
			Inline attribute definition is covered in the second part.
			This feature allows you to assign to your objects customized materials, textures, fill patterns, line types and text styles
			that are not present in the current attribute set of your project.
		
Directives

				The influence of directives on the interpretation of the subsequent GDL statements remains in effect until the next directive or the end of the script.
				Called scripts inherit the current settings: the changes have local influence. Returning from the script resets the settings as they were before the macro call.
			
Directives for 3D and 2D Scripts

LET

					
					[LET] varnam = n

					
						Value assignment. The LET directive is optional. The variable will store the evaluated value of n.

					
				RADIUS

					
					RADIUS radius_min, radius_max

					
						Sets smoothness for cylindrical elements and arcs in polylines.

						A circle with a radius of r is represented:

							if r < radius_min, by a hexagon,

	if r >= radius_max, by a 36-edged polygon,

	if radius_min < r < radius_max, by a polygon of
									(6+30*(r-radius_min)/(radius_max-radius_min)) edges.

						Arc conversion is proportional to this.

						
							After a RADIUS statement, all previous RESOL and TOLER
							statements lose their effect.
						

						
							r_min <= r_max

						
					
					Example:

	
											RADIUS 1.1, 1.15
CYLIND 3.0, 1.0

											
											RADIUS 0.9, 1.15
CYLIND 3.0, 1.0

										
	
											[image: ../Images/Attributes_radius_ex1.png]

											
											[image: ../Images/Attributes_radius_ex2.png]

										

				RESOL

					
					RESOL n

					
						Sets smoothness for cylindrical elements and arcs in polylines. Circles are converted to regular polygons having n sides.

						Arc conversion is proportional to this.

						After a RESOL statement, any previous RADIUS and TOLER statements lose their effect.

						
							n >= 3

						
						
							Default:
						

						RESOL 36

					
					Example:

	
											RESOL 5
CYLIND 3.0, 1.0

											
											RESOL 36
CYLIND 3.0, 1.0

										
	
											[image: ../Images/Attributes_resol_ex1.png]

											
											[image: ../Images/Attributes_radius_ex2.png]

										

				TOLER

					
					TOLER d

					
						
							Sets smoothness for cylindrical elements and arcs in polylines.
							The error of the arc approximation (i.e., the greatest distance between the theoretical arc and the generated chord) will be smaller than d.
						

						After a TOLER statement, any previous RADIUS and RESOL statements lose their effect.

					
					Example:

	
											TOLER 0.1
CYLIND 3.0, 1.0

											
											TOLER 0.01
CYLIND 3.0, 1.0

										
	
											[image: ../Images/Attributes_toler_ex1.png]

											
											[image: ../Images/Attributes_radius_ex2.png]

										

				Note

					The RADIUS, RESOL and TOLER directives set smoothness for cylindrical 3D elements
					(CIRCLE, ARC, CYLIND, SPHERE, ELLIPS, CONE, ARMC, ARME, ELBOW, REVOLVE) and arcs in 2D polylines using curved edges.
				

					See the section called “Additional Status Codes”.
				
PEN

					
					PEN n

					
						Sets the color.

						
							0 < n <= 255

						
						
							Default:
						

						PEN 1

						if there is no PEN statement in the script.

						
							(For library parts, default values come from the library part’s settings.
							If the script refers to a non-existing index, PEN 1 becomes the default setting.)
						

					
				LINE_PROPERTY

					
					LINE_PROPERTY expr

					
						
							Defines the property for all subsequently generated lines in the 2D script (RECT2, LINE2, ARC2, CIRCLE2, SPLINE2, SPLINE2A, POLY2, FRAGMENT2commands)
							until the next LINE_PROPERTY statement. Default value is generic.
						

						
							expr: possible values:

							0: all lines are generic lines,

							1: all lines are inner,

							2: all lines are contour.

						

					
				[SET] STYLE

					
					[SET] STYLE name_string

					[SET] STYLE index

					
						All the texts generated afterwards will use that style until the next SET STYLE statement.

						
							The index is a constant referring to a style stack in the internal data structure
							(negative indices mean indices in the data structure of materials previously defined in the GDL script).
							This stack is modified during GDL analysis and can also be modified from within the program.
							The use of the index instead of the style name is only recommended with the prior use of the IND function.
						

						
							Default:
						

						SET STYLE 0

						(application font, size 5 mm, anchor = 1, normal face) if there is no SET STYLE statement in the script.

					
				
Directives Used in 3D Scripts Only

MODEL

					
					MODEL WIRE

					MODEL SURFACE

					MODEL SOLID

					
						Sets the representation mode in the current script.

						MODEL WIRE: only wireframe, no surfaces or volumes. Objects are transparent.

						
							MODEL SURFACE, MODEL SOLID: The generation of the section surfaces is based on the relation of the boundary surfaces,
							so that both methods generate the same 3D internal data structure. Objects are opaque.
						

						The only distinction can be seen after cutting away a part of the body:

						MODEL SURFACE: the inside of bodies will be visible,

						MODEL SOLID: new surfaces may appear.

						
							Default:
						

						MODEL SOLID

					
					Example:
To illustrate the three modeling methods, consider the following three blocks:
MODEL WIRE
BLOCK 3,2,1
ADDY 4
MODEL SURFACE
BLOCK 3,2,1
ADDY 4
MODEL SOLID
BLOCK 3,2,1
After cutting them with a plane:
[image: ../Images/Attributes_model.png]

				[SET] MATERIAL

					
					[SET] MATERIAL name_string

					[SET] MATERIAL index

					
						
							All the surfaces generated afterwards will represent that material until the next MATERIAL statement.
							Surfaces in the
							BPRISM_,
							CPRISM_,
							FPRISM_,
							HPRISM_,
							SPRISM_,
							CSLAB_,
							CWALL_,
							BWALL_,
							XWALL_,
							CROOF_,
							MASS,
							bodies are exceptions to this rule.

						
							The index is a constant referring to a material stack in the internal data structure
							(negative indices mean indices in the data structure of materials previously defined in the GDL script).
							This stack is modified during GDL analysis and can also be modified from within the program.
							The use of the index instead of the material name is only recommended with the prior use of the IND function.
						

						index 0 has a special meaning: surfaces use the color of the current pen and they have a matte appearance.

						
							Default:
						

						MATERIAL 0

						if there is no MATERIAL statement in the script.

						
							(For Library parts, default values are read from the Library part’s settings.
							If the script refers to a non-existing index, MATERIAL 0 becomes the default setting.)
						

					
				SECT_FILL

					
					SECT_FILL fill, fill_background_pen,
 fill_pen, contour_pen

				or
SECT_ATTRS

					
					SECT_ATTRS fill, fill_background_pen,
 fill_pen, contour_pen [, line_type]

					
						
							Defines the attributes used for the cut part of the 3D elements in the Section/Elevation window and
							the PROJECT2{3} command
							(for compatibility reasons previous versions of the PROJECT2 command are not affected).
						

						
							fill: fill name or index number.

						

						
							fill_background_pen: fill background pencolor number.

						

						
							fill_pen: fill pencolor number.

						

						
							contour_pen: fill contour pencolor number.

						

						
							line_type: line type of polygon edges.

						

					
				SHADOW

					
					SHADOW casting [, catching]

					
						
							Controls the shadow casting of the elements in
							PhotoRendering and in vectorial shadow casting.
						

						
							casting: ON, AUTO or OFF

							ON: all the subsequent elements will cast shadows in all circumstances,

							OFF: none of the subsequent elements will cast shadows in any circumstance,

							AUTO: shadow casting will be determined automatically

							Setting SHADOW OFF for hidden parts will spare memory space and processing time.

							Setting SHADOW ON ensures that even tiny details will cast shadows.

						

						
							catching: ON or OFF

							This optional parameter controls the appearance of shadows (from other bodies) on surfaces.

						

						
							If shadow casting isn't specified, the default will be AUTO.
						

					
					Example:

	
											SHADOW OFF
BRICK 1, 1, 1
ADDX 2
SHADOW ON
BRICK 1, 1, 2
ADDX 2
SHADOW OFF
BRICK 1, 1, 3

											
											[image: ../Images/Attributes_shadow.png]

										

				
Directives Used in 2D Scripts Only

DRAWINDEX

					
					DRAWINDEX number

					
						Defines the drawing order of 2D Script elements. Elements with a smaller drawindex will be drawn first.

						
							0 < number <= 50

						
						(In the current version of GDL only the 10, 20, 30, 40 and 50 DRAWINDEX values are valid. Other values will be rounded to these.)

						If no DRAWINDEX directive is present, the default drawing order is the following:

						1 Figures

						2 Fills

						3 Lines

						4 Text elements

					
				[SET] FILL

					
					[SET] FILL name_string

					[SET] FILL index

					
						All the 2D polygons generated afterwards will represent that fill until the next SET FILL statement.

						
							The index is a constant referring to a fill stack in the internal data structure.
							This stack is modified during GDL analysis and can also be modified from within the program.
							The use of the index instead of the fill name is only recommended with the prior use of the IND function.
						

						
							Default:
						

						SET FILL 0

						i.e., empty fill, if there is no SET FILL statement in the script.

					
				[SET] LINE_TYPE

					
					[SET] LINE_TYPE name_string

					[SET] LINE_TYPE index

					
						
							All the 2D lines generated afterwards will represent that line type (in lines, arcs, polylines) until the next SET LINE_TYPE statement.
							The index is a constant that refers to a line type stack in the internal data structure.
							This stack is modified during GDL analysis and can also be modified from the program.
							The use of the index instead of the line type name is only recommended with the prior use of the IND function.
						

						
							Default:
						

						SET LINE_TYPE 1

						i. e., solid line, if there is no SET LINE_TYPE statement in the script.

					
				

Inline Attribute Definition

				Attributes in can be created using the material, fill and line type dialog boxes.
				These floor plan attributes can be referenced from any GDL script. Attributes can also be defined in GDL scripts. There are two different cases:
			
	
						Attribute definition in the MASTER_GDL script. The MASTER_GDL script is interpreted when the library that contains it is loaded in the memory.
						The MASTER_GDL attributes are merged into the floor plan attributes; attributes with the same names are not replaced.
						Once the MASTER_GDL is loaded, the attributes defined in it can be referenced from any script.
					

	
						Attribute definition in library parts. The materials and textures defined this way can be used in the script and its second generation scripts.
						Fills and line types defined and used in the 2D script have the same behavior as if they were defined in the MASTER_GDL script.
					

The Check GDL Script command in the script window helps to verify whether the material, fill, line type or style parameters are correct.

				When a material, fill, line type or style is different in the 3D interpretation of the library part from the intended one,
				but there is no error message, this probably means that one or more of the parameter values are incorrect.
				The Check GDL Scripts command will help you with detailed messages to find these parameters.
			
Materials

DEFINE MATERIAL

					
					DEFINE MATERIAL name type,
 surface_red, surface_green, surface_blue
 [, ambient_ce, diffuse_ce, specular_ce, transparent_ce,
 shining, transparency_attenuation
 [, specular_red, specular_green, specular_blue,
 emission_red, emission_green, emission_blue, emission_att]]
 [, fill_index [, fillcolor_index, texture_index]]

					
						Note
This command can contain additional data definition.

						
							See the section called “Additional Data” for details.
						

						
							Any GDL script can include material definitions prior to the first reference to that material name.
							This material can only be used for 3D elements in its own script and its second generation scripts.
						

						
							name: name of the material.

						

						
							type:
								type of the material. The actual number (n) of parameters that define the material is different, depending on the type.
								The meaning of the parameters and their limits are explained in the examples’ comments.
							

							0: general definition, n=16,

							1: simple definition, n=9 (extra parameters are constants or calculated from given values),

							2-7:
								predefined material types, n=3.
								The three values are the RGB components of the surface color. Other parameters are constants or calculated from the color.
							

							2: matte,

							3: metal,

							4: plastic,

							5: glass,

							6: glowing,

							7: constant,

							10: general definition with fill parameter, n=17,

							11: simple definition with fill parameter, n=10,

							12-17: predefined material types with fill parameter, n=4,

							20: general definition with fill, color index of fill and index of texture parameters, n=19,

							21: simple definition with fill, color index of fill and index of texture parameters, n=12,

							22-27: predefined material types with fill, color index of fill and index of texture parameters, n=6.

							20-27:
								Special meanings for types 20-27: If the pen number is zero, vectorial hatches will be generated with the active pen.
								Zero value for a texture or fill index allows you to define materials without a vectorial hatch or texture.
							

						

					
					Example 1:
Materials with solid colors
DEFINE MATERIAL "water" 0,
 0.5284, 0.5989, 0.6167,! surface RGB [0.0..1.0]
 1.0, ! ambient coefficient [0.0..1.0]
 0.5, ! diffuse coefficient [0.0..1.0]
 0.5, ! specular coeff. [0.0..1.0]
 0.9, ! transparent coeff. [0.0..1.0]
 2.0, ! shining [0.0..100.0]
 1, ! transparency atten. [0.0..4.0]
 0.5284, 0.5989, 0.6167,! specular RGB [0.0..1.0]
 0, 0, 0, ! emission RGB [0.0..1.0]
 0.0 ! emission atten. [0.0..65.5]
DEFINE MATERIAL "asphalt" 1,
 0.1995, 0.2023, 0.2418,! surface RGB [0.0..1.0]
 1.0, 1.0, 0.0, 0.0,
 ! ambient, diffuse, specular, transparent
 ! coefficients [0.0..1.0]
 0, ! shining [0..100]
 0 ! transparency attenuation [0..4]
DEFINE MATERIAL "matte red" 2,
 1.0, 0.0, 0.0 ! surface RGB [0.0..1.0]

					Example 2:
Material with fill
DEFINE MATERIAL "Brick-Red" 10,
 0.878294, 0.398199, 0.109468,
 0.58, 0.85, 0.0, 0.0,
 0,
 0.0,
 0.878401, 0.513481, 0.412253,
 0.0, 0.0, 0.0,
 0,
 IND(FILL, "common brick") ! fill index

					Example 3:
Material with fill and texture
DEFINE MATERIAL "Yellow Brick+*" 20,
 1, 1, 0, ! surface RGB [0.0 .. 1.0]
 0.58, 0.85, 0, 0,
 ! ambient, diffuse, specular, transparent
 ! coefficients [0.0 .. 1.0]
 0, ! shining [0.0 .. 100.0]
 0, ! transparency attenuation [0.0 .. 4.0]
 0.878401, 0.513481, 0.412253, ! specular RGB [0.0 .. 1.0]
 0, 0, 0, ! emission RGB [0.0 .. 1.0]
 0, ! emission attenuation [0.0 .. 65.5]
 IND(FILL, "common brick"), 61,
 IND(TEXTURE, "Brick")
 ! Fill index, color index, texture index

				DEFINE MATERIAL BASED_ON

					
					DEFINE MATERIAL name [,] BASED_ON orig_name [,] PARAMETERS name1 = expr1 [, ...]
 [[,] ADDITIONAL_DATA name1 = expr1 [, ...]]

					
						
							Material definition based on an existing material.
							Specified parameters of the original material will be overwritten by the new values, other parameters remain untouched.
							Using the command without actual parameters results in a material exactly the same as the original, but with a different name.
							Parameter values of a material can be obtained using the REQUEST{2} ("Material_info", ...) function.
						

						
							orig_name: name of the original material (name of an existing, previously defined in GDL or floor plan material).

						

						
							namei: material parameter name to be overwritten by a new value. Names corresponding to parameters of material definition:

							gs_mat_surface_r, gs_mat_surface_g, gs_mat_surface_b: (surface RGB [0.0..1.0])

							gs_mat_ambient: (ambient coefficient [0.0..1.0])

							gs_mat_diffuse: (diffuse coefficient [0.0..1.0])

							gs_mat_specular: (specular coefficient [0.0..1.0])

							gs_mat_transparent: (transparent coefficient [0.0..1.0])

							gs_mat_shining: (shininess [0.0..100.0])

							gs_mat_transp_att: (transparency attenuation [0.0..4.0])

							gs_mat_specular_r, gs_mat_specular_g, gs_mat_specular_b: (specular color RGB [0.0..1.0])

							gs_mat_emission_r, gs_mat_emission_g, gs_mat_emission_b: (emission color RGB [0.0..1.0])

							gs_mat_emission_att: (emission attenuation [0.0..65.5])

							gs_mat_fill_ind: (fill index)

							gs_mat_fillcolor_ind: (fill color index)

							gs_mat_texture_ind: (texture index)

						

						
							expri: new value to overwrite the specified parameter of the material. Value ranges are the same as at the material definition.

						

					
					Example:

n = REQUEST{2} ("Material_info", "Brick-Face", "gs_mat_emission_rgb ", em_r, em_g, em_b)
em_r = em_r + (1 - em_r) / 3
em_g = em_g + (1 - em_g) / 3
em_b = em_b + (1 - em_b) / 3
DEFINE MATERIAL "Brick-Face light" [,] BASED_ON "Brick-Face" \
 PARAMETERS gs_mat_emission_r = em_r,
 gs_mat_emission_g = em_g, gs_mat_emission_b = em_b
SET MATERIAL "Brick-Face"
BRICK a, b, zzyzx
ADDX a
SET MATERIAL "Brick-Face light"
BRICK a, b, zzyzx

				DEFINE TEXTURE

					
					DEFINE TEXTURE name expression, x, y, mask, angle

					
						
							Any GDL script can include texture definition prior to the first reference to that texture name.
							The texture can be used only in the script in which it was defined and its subsequent second generation scripts.
						

						
							name: name of the texture.

						

						
							expression:
								picture associated with the texture.
								A string expression means a file name, a numerical expression an index of a picture stored in the library part.
								A 0 index is a special value which refers to the preview picture of the library part.
							

						

						
							x: logical width of the texture.

						

						
							y: logical height of the texture.

						

						
							mask:
mask = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8 + 256*j9, where each j can be 0 or 1.
	

							Alpha channel controls (j1... j6):

							j1: alpha channel changes the transparency of texture,

							j2:
								Bump mapping or surface normal perturbation.
								Bump mapping uses the alpha channel to determine the amplitude of the surface normal,
							

							j3: alpha channel changes the diffuse color of texture,

							j4: alpha channel changes the specular color of texture,

							j5: alpha channel changes the ambient color of texture,

							j6: alpha channel changes the surface color of texture,

							Connection controls (j7... j9): (If the value is zero, normal mode is selected.)

							[image: ../Images/Attributes_defineTexture_connectContZero.png]

							j7: the texture will be shifted randomly,

							[image: ../Images/Attributes_defineTexture_connectContj7.png]

							j8: mirroring in x direction,

							[image: ../Images/Attributes_defineTexture_connectContj8.png]

							j9: mirroring in y direction.

							[image: ../Images/Attributes_defineTexture_connectContj9.png]

						

						
							angle: angle of the rotation.

						

					
					Example:

DEFINE TEXTURE "Brick" "Brick.PICT", 1.35, 0.3, 256+128, 35.0

				
Fills

DEFINE FILL

					
					DEFINE FILL name [[,] FILLTYPES_MASK fill_types,]
 pattern1, pattern2, pattern3, pattern4,
 pattern5, pattern6, pattern7, pattern8,
 spacing, angle, n,
 frequency1, direction1, offset_x1, offset_y1, m1,
 length11, ... length1m,
 ...
 frequencyn, directionn, offset_xn,
 lengthn1, ... lengthnm

					
						Note
This command can contain additional data definition.

						
							See the section called “Additional Data” for details.
						

						
							Any GDL script may include fill definitions prior to the first reference to that fill name.
							The fill defined this way can be used only in the script in which it was defined and its subsequent second generation-scripts.
						

						[image: ../Images/Attributes_defineFill_params1.png]

						
							name: name of the fill.

						

						
							fill_types:
fill_types = j1 + 2*j2 + 4*j3, where each j can be 0 or 1.
	

							j1: cut fills,

							j2: cover fills,

							j3: drafting fills.

						

						If the j bit is set, the defined fill can be used in ArchiCAD corresponding to its specified type. Default is all fills (0).

						
							pattern definition: pattern1, pattern2, pattern3, pattern4, pattern5, pattern6, pattern7, pattern8:
								8 numbers between 0 and 255 representing binary values. Defines the bitmap pattern of the fill.
							

						

						[image: ../Images/Attributes_defineFill_params2.png]

						
							spacing:
								hatch spacing - defines a global scaling factor for the whole fill.
								All values will be multiplied by this number in both the x and y direction.
							

						

						
							angle: global rotation angle in degrees.

						

						
							n: number of hatch lines.

						

						
							frequencyi: frequency of the line (the distance between two lines is spacing * frequencyi).

						

						
							diri: direction angle of the line in degrees.

						

						
							offset_xi, offset_yi: offset of the line from the origin.

						

						
							mi: number of line parts.

						

						
							lengthij:
								length of the line parts (the real length is spacing * lengthij). Line parts are segments and spaces following each other.
								First line part is a segment, zero length means a dot.
							

						

						
							The bitmap pattern is only defined by the pattern1... pattern8 parameters and is used when the display options for Polygon Fills are set
							to "Bitmap Pattern". To define it, choose the smallest unit of the fill, and represent it as dots and empty spaces using a rectangular grid with 8x8 locations.
							The 8 pattern parameters are decimal representations of the binary values in the lines of the grid (a dot is 1, an empty space is 0).
						

						
							The vectorial hatch is defined by the second part of the fill definition as a collection of dashed lines repeated with a given frequency (frequencyi).
							Each line of the collection is described by its direction (directioni), its offset from the origin (offset_xi, offset_yi)
							and the dashed line definition which contains segments and spaces with the given length (lengthij) following each other.
						

						Note

							Only simple fills can be defined with the DEFINE FILL command.
							There is no possibility to define symbol fills with this command.
						

					
					Example:

DEFINE FILL "brick" 85, 255, 136, 255,
 34, 255, 136, 255,
 0.08333, 0.0, 4,
 1.0, 0.0, 0.0, 0.0, 0,
 3.0, 90.0, 0.0, 0.0, 2,
 1.0, 1.0,
 3.0, 90.0, 1.5, 1.0, 4,
 1.0, 3.0, 1.0, 1.0,
 1.5, 90.0, 0.75, 3.0, 2,
 1.0, 5.0
Bitmap pattern:
Pattern: Binary value:
pattern1 = 85 01010101 • • • •
pattern2 = 255 11111111 ••••••••
pattern3 = 136 10001000 • •
pattern4 = 255 11111111 ••••••••
pattern5 = 34 00100010 • •
pattern6 = 255 11111111 ••••••••
pattern7 = 136 10001000 • •
pattern8 = 255 11111111 ••••••••
	
											View:

											
											Vectorial hatch:

										
	
											[image: ../Images/Attributes_defineFill_ex1.png]

											
											[image: ../Images/Attributes_defineFill_ex2.png]

										

				DEFINE FILLA

					
					DEFINE FILLA name [,] [FILLTYPES_MASK fill_types,]
 pattern1, pattern2, pattern3, pattern4,
 pattern5, pattern6, pattern7, pattern8,
 spacing_x, spacing_y, angle, n,
 frequency1, directional_offset1, direction1,
 offset_x1, offset_y1, m1,
 length11, ... length1m,
 ...
 frequencyn, directional_offsetn, directionn,
 offset_xn, offset_yn, mn,
 lengthn1, ... lengthnm

					
						Note
This command can contain additional data definition.

						
							See the section called “Additional Data” for details.
						

						[image: ../Images/Attributes_defineFilla_params1.png]

						An extended DEFINE FILL statement.

						[image: ../Images/Attributes_defineFilla_params2.png]

						
							spacing_x, spacing_y:
								spacing factor in the x and y direction, respectively.
								These two parameters define a global scaling factor for the whole fill.
								All values in the x direction will be multiplied by spacing_x and all values in the y direction will be multiplied by spacing_y.
							

						

						
							directional_offseti:
								the offset of the beginning of the next similar hatch line, measured along the line’s direction.
								Each line of the series will be drawn at a distance defined by frequencyi with an offset defined by directional_offseti.
								The real length of the offset will be modulated by the defined spacing.
							

						

					
					Example:

DEFINE FILLA "TEST" 8, 142, 128, 232,
 8, 142, 128, 232,
 0.5, 0.5, 0, 2,
 2, 1, 90, 0,
 0, 2, 1, 1,
 1, 2, 0, 0, 0,
 2, 1, 3
FILL "TEST"
POLY2 4, 6,
 -0.5, -0.5, 12, -0.5,
 12, 6, -0.5, 6
Bitmap pattern:
Pattern: Binary value:
pat1 = 8 00001000 •
pat2 = 142 10001110 • •••
pat3 = 128 10000000 •
pat4 = 232 11101000 ••• •
pat5 = 8 00001000 •
pat6 = 142 10001110 • •••
pat7 = 128 10000000 •
pat8 = 232 11101000 ••• •
	
											View:

											
											Vectorial hatch:

										
	
											[image: ../Images/Attributes_defineFilla_ex1.png]

											
											[image: ../Images/Attributes_defineFilla_ex2.png]

										

				DEFINE SYMBOL_FILL

					
					DEFINE SYMBOL_FILL name [,][FILLTYPES_MASK fill_types,]
 pat1, pat2, pat3, pat4, pat5, pat6, pat7, pat8,
 spacingx1, spacingy1, spacingx2, spacingy2,
 angle, scaling1, scaling2, macro_name [,] PARAMETERS [name1
 = value1, ... namen = valuen]

					
						Note
This command can contain additional data definition.

						
							See the section called “Additional Data” for details.
						

						[image: ../Images/Attributes_defineSymbolFill_params.png]

						
							An extended DEFINE FILL statement, which allows you to include a library part drawing in a fill definition.
							The usage of macro_name and the parameters are the same as for the CALL command.
						

						
							spacingx1, spacingx2: horizontal spacings.

						

						
							spacingy1, spacingy2: vertical spacings.

						

						
							scaling1: horizontal scale.

						

						
							scaling2: vertical scale.

						

						
							macro_name: the name of the library part.

						

					
				DEFINE SOLID_FILL

					
					DEFINE SOLID_FILL name [[,] FILLTYPES_MASK fill_types]

					
						Defines a solid fill.

						Note
This command can contain additional data definition.

						
							See the section called “Additional Data” for details.
						

					
				DEFINE EMPTY_FILL

					
					DEFINE EMPTY_FILL name [[,] FILLTYPES_MASK fill_types]

					
						Defines an empty fill.

						Note
This command can contain additional data definition.

						
							See the section called “Additional Data” for details.
						

					
				DEFINE LINEAR_GRADIENT_FILL

					
					DEFINE LINEAR_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types]

					
						Define linear gradient fill.

					
				DEFINE RADIAL_GRADIENT_FILL

					
					DEFINE RADIAL_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types]

					
						Define radial gradient fill.

					
				DEFINE TRANSLUCENT_FILL

					
					DEFINE TRANSLUCENT_FILL name [[,] FILLTYPES_MASK fill_types]
 pat1, pat2, pat3, pat4, pat5, pat6, pat7, pat8,
 percentage

					
						Define a fill, which shows the background and foreground colors in mixture defined by the given percentage value.

						
							percentage:
								percentage of foreground color opacity;
								0 displays background color only (like empty fill), 100 displays the foreground color only (like solid fill).
							

						

					
				DEFINE IMAGE_FILL

					
					DEFINE IMAGE_FILL name image_name [[,] FILLTYPES_MASK fill_types]
 part1, part2, part3, part4, part5, part6, part7, part8,
 image_vert_size, image_hor_size, image_mask, image_rotangle

					
						Define a fill based on an image pattern.

						
							image_name: name of the pattern image loaded in the current library.

						

						
							image_vert_size, image_hor_size: model size of the pattern.

						

						
							image_mask: tiling directive
image_mask = 1024*j11 + 2048*j12, where each j can be 0 or 1.
	

							For more information about laying out images on a surface see the DEFINE TEXTURE command.

							j11: mirroring in x direction

							j12: mirroring in y direction

						

						
							image_rotangle: rotation angle of the pattern from the normal coordinate system.

						

					
				
Line Types

DEFINE LINE_TYPE

					
					DEFINE LINE_TYPE name spacing, n,
 length1, ... lengthn

					
						Note
This command can contain additional data definition.

						
							See the section called “Additional Data” for details.
						

						
							Any GDL script may include line type definitions prior to the first reference to that line-type name.
							The line type defined this way can be used only for 2D elements in the script in which it was defined and its subsequent second generation scripts.
						

						
							name: name of the line type.

						

						
							spacing: spacing factor.

						

						
							n: number of the line parts.

						

						
							lengthi:
								length of the line parts (the real length is spacing * lengthi). Line parts consist of segments and spaces.
								First line part is a segment, zero length means a dot.
							

						

						Note

							Only simple line types - i.e. consisting only of segments and spaces - can be defined
							with this command, defining symbol line types can be done with the DEFINE SYMBOL_LINE command.
						

					
					Example:

DEFINE LINE_TYPE "line - - ." 1,
 6, 0.005, 0.002, 0.001, 0.002, 0.0, 0.002

				DEFINE SYMBOL_LINE

					
					DEFINE SYMBOL_LINE name dash, gap, macro_name PARAMETERS [name1 = value1,
 ...
 namen = valuen]

					
						Note
This command can contain additional data definition.

						
							See the section called “Additional Data” for details.
						

						
							An extended DEFINE LINE statement, which allows you to include a library part drawing in a line definition.
							The usage of macro_name and the parameters are the same as for the CALL command.
						

						
							dash: scale of both line components.

						

						
							gap: gap between each component.

						

					
				
Text Styles and Text Blocks

DEFINE STYLE

					
					DEFINE STYLE name font_family, size, anchor, face_code

					
						Recommended to be used with the TEXT2 and TEXT commands.

						
							GDL scripts may include style definitions prior to the first reference to that style name.
							The style defined this way can be used only in the script in which it was defined and its subsequent second generation scripts.
						

						
							name: name of the style.

						

						
							font_family: name of the used font family (e.g., Garamond).

						

						
							size: height of the "l" character in millimeters in paper space or meters in model space.

						

						If the defined style is used with the TEXT2 and TEXT commands, size means character heights in millimeters.

						
							If used with PARAGRAPH strings in the RICHTEXT2 and RICHTEXT commands,
							size meaning millimeters or meters depends on the fixed_height parameter of the TEXTBLOCK definition,
							while the outline and shadow face_code values and the anchor values are not effective.
						

						
							anchor: code of the position point in the text.

							[image: ../Images/Attributes_anchor.png]

						

						
							face_code: a combination of the following values:
face_code = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5, where each j can be 0 or 1.
	

							j1: bold,

							j2: italic,

							j3: underline,

							j4: outline,

							j5: shadow,

							If face_code = 0, then style is normal.

						

						Note
The outline and shadow values are effective only on Macintosh platform and up to the 8.1 version of ArchiCAD.

					
				DEFINE STYLE{2}

					
					DEFINE STYLE{2} name font_family, size, face_code

					
						New version of style definition, recommended to be used with PARAGRAPH definitions.

						
							name: name of the style.

						

						
							font_family: name of the used font family (e.g., Garamond).

						

						
							size: height of the characters in mm or m in model space.

						

						
							face_code: a combination of the following values:
face_code = j1 + 2*j2 + 4*j3 + 32*j6 + 64*j7 + 128*j8, where each j can be 0 or 1.
	

							j1: bold,

							j2: italic,

							j3: underline,

							j6: superscript,

							j7: subscript,

							j8: strikethrough.

							If face_code = 0, then style is normal.

						

						
							If the defined style is used with the TEXT2 command, size means character heights in millimeters,
							while the superscript, subscript and strikethrough face_code values are not effective.
							If used with PARAGRAPH strings in the RICHTEXT2 and RICHTEXT commands,
							size meaning millimeters or meters depends on the fixed_height parameter of the TEXTBLOCK definition.
						

					
				PARAGRAPH

					
					PARAGRAPH name alignment, firstline_indent,
 left_indent, right_indent, line_spacing [,
 tab_position1, ...]
 [PEN index]
 [[SET] STYLE style1]
 [[SET] MATERIAL index]
 'string1'
 'string2'
 ...
 'string n'
 [PEN index]
 [[SET] STYLE style2]
 [[SET] MATERIAL index]
 'string1'
 'string2'
 ...
 'string n'
 ...
ENDPARAGRAPH

					
						
							GDL scripts may include paragraph definitions prior to the first reference to that paragraph name.
							The paragraph defined this way can be used only in the script in which it was defined and its subsequent second generation scripts.
							A paragraph is defined to be a sequence of an arbitrary number of strings (max 256 characters long each) with different attributes:
							style, pen and material (3D).
							If no attributes are specified inside the paragraph definition, actual (or default) attributes are used.
							The new lines included in a paragraph string (using the special character '\n') will automatically split the string
							into identical paragraphs, each containing one line.
							Paragraph definitions can be referenced by name in the TEXTBLOCK command.
							All length type parameters (firstline_indent, left_indent, right_indent, tab_position) meaning millimeters or meters
							depends on the fixed_height parameter of the TEXTBLOCK definition.
						

						
							name:
								name of the paragraph. Can be either string or integer.
								Integer identifiers works only with the TEXTBLOCK_ command

						

						
							alignment: alignment of the paragraph strings. Possible values:

							1: left aligned,

							2: center aligned,

							3: right aligned,

							4: full justified.

						

						
							firstline_indent: first line indentation, in mm or m in model space.

						

						
							left_indent: left indentation, in mm or m in model space.

						

						
							right_indent: right indentation, in mm or m in model space.

						

						
							line_spacing:
								line spacing factor. The default distance between the lines (character size + distance to the next line)
								defined by the actual style will be multiplied by this number.
							

						

						
							tab_positioni:
								consecutive tabulator positions (each relative to the beginning of the paragraph), in mm or m in model space.
								Tabulators in the paragraph strings will snap to these positions.
								If no tabulator positions are specified, default values are used (12.7 mm).
								Works only with '\t' special character.
							

						

						
							stringi:
								part of the text. Can be either constant string or string type parameter.
							

						

					
				TEXTBLOCK

					
					TEXTBLOCK name width, anchor, angle, width_factor, charspace_factor, fixed_height,
 'string_expr1' [, 'string_expr2', ...]

					
						
							Textblock definition. GDL scripts may include textblock definitions prior to the first reference to that textblock name.
							The textblock defined this way can be used only in the script in which it was defined and its subsequent second generation scripts.
							A textblock is defined to be a sequence of an arbitrary number of strings or paragraphs which can be placed
							using the RICHTEXT2 command and the RICHTEXT command.
							Use the REQUEST ("TEXTBLOCK_INFO", ...) function to obtain information on the calculated width and height of a textblock.
						

						
							name: name of the textblock, string type value.

						

						
							width: textblock width in mm or m in model space, if 0 it is calculated automatically.

						

						
							anchor: code of the position point in the text.

						

						[image: ../Images/Attributes_anchor.png]

						
							angle: rotation angle of the textblock in degrees.

						

						
							width_factor: Character widths defined by the actual style will be multiplied by this number.

						

						
							charspace_factor: The horizontal distance between two characters will be multiplied by this number.

						

						
							fixed_height: Possible values:

							1: the placed TEXTBLOCK will be scale-independent and all specified length type parameters will mean millimeters,

							0: the placed TEXTBLOCK will be scale-dependent and all specified length type parameters will mean meters in model space.

						

						
							string_expri: means paragraph name if it was previously defined, simple string otherwise (with default paragraph parameters).

						

					
				TEXTBLOCK_

					
					TEXTBLOCK_ name width, anchor, angle, width_factor, charspace_factor, fixed_height,
 'string_expr1' [, 'string_expr2', ...]

					
						
							Similar to the TEXTBLOCK command.
							The meaning of all the parameters are the same, but the name of the textblock can be either string or integer.
							And it can handle integer type named paragraphs as well.
						

					
				
Additional Data

					Attribute definitions can contain optional additional data definitions after the ADDITIONAL_DATA keyword.
					The additional data must be entered after the previously defined parameters of the attribute command.
					An additional data has a name (namei) and a value (valuei), which can be an expression of any type, even an array.
					If a string parameter name ends with the substring "_file", its value is considered to be a file name and will be included in the archive project.
					Different meanings of additional data can be defined and used by ArchiCAD or Add-Ons to ArchiCAD.
				

					
						See meanings of LightWorks Add-On parameters at
						http://www.graphisoft.com/support/developer/documentation/LibraryDevDoc/16/.
					
				
Additional data definition is available in the following commands:
DEFINE MATERIAL parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE MATERIAL name [,] BASED_ON orig_name [,] PARAMETERS name1 = expr1 [, ...]
 [[,] ADDITIONAL_DATA name1 = expr1 [, ...]]
DEFINE FILL parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE FILLA parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE SYMBOL_FILL parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE SOLID_FILL name [[,] FILLTYPES_MASK fill_types]
 [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE EMPTY_FILL name [[,] FILLTYPES_MASK fill_types]
 [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE LINEAR_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types]
 [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE RADIAL_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types]
 [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE TRANSLUCENT_FILL name [[,] FILLTYPES_MASK fill_types]
 pat1, pat2, pat3, pat4, pat5, pat6, pat7, pat8,
 percentage [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE IMAGE_FILL name image_name [[,] FILLTYPES_MASK fill_types]
 part1, part2, part3, part4, part5, part6, part7, part8,
 image_vert_size, image_hor_size, image_mask, image_rotangle
 [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE LINE_TYPE parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE SYMBOL_LINE parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]

External file dependence

FILE_DEPENDENCE

				
				FILE_DEPENDENCE "name1" [, "name2", ...]

				
					You can give a list of external files on which your GDL script depends on. File names should be constant strings.

					
						All files specified here will be included in the archive project
						(like constant macro names used in CALL statements and constant picture names used in various GDL commands).
						The command works on this level only: if the specified files are library parts, their called macro files will not be included.
					

					
						The command can be useful in cases when external files are referenced at custom places in the GDL script, for example:
						ADDITIONAL_DATA file parameters, data files in file operations.
					

				
			
Chapter 9. Non-Geometric Scripts

			In addition to the 3D and 2D script windows that define the appearance of the GDL Object,
			further scripts are available for adding complementary information to it.
			These are the Properties Script used for quantity calculations,
			the Parameter Script that includes the list of possible values for different parameters,
			and the User Interface Script for creating a custom interface for parameter entry,
			Forward Migration Script and Backward Migration Scripts to define how to migrate an old instance forward to the actual
			element or how to migrate the element backward to an older one.
			The commands available for all these script types are detailed on the following pages.
		
The Properties Script

				Library parts have a GDL window reserved for the Properties script.
				This script allows you to make library part properties dependent on parameters, and, through a directive, define their place in the final
				component list. By using a few commands,
				it is possible to define in the script local descriptors and components (created in the Properties windows of earlier ArchiCAD versions).
				Descriptors and components from external databases can also be referenced.
				Code lengths cannot exceed 32 characters.
			
In the Properties script, you can use any GDL command that does not generate a shape.
DATABASE_SET

				
				DATABASE_SET set_name [, descriptor_name, component_name, unit_name, key_name,
 criteria_name, list_set_name]

				
					
						Database set definition or Database set selection.
						If this command is placed in a MASTER_GDL script, it will define a Database set
						containing Descriptor, Component, Unit, Key, Criteria and List Scheme files.
					

					
						This Database set name can then be referenced from Properties Scripts
						using the same command with only the set_name parameter as a directive,
						by selecting the actual Database set that REF COMPONENTs and REF DESCRIPTORs refer to.
						The default Database set name is "Default Set", and will be used if no other set has been selected.
						The default Database set file names are: DESCDATA, COMPDATA, COMPUNIT, LISTKEY, LISTCRIT, LISTSET.
						All these names get translated in localized ArchiCAD versions.
					

					Scripts can include any number of DATABASE_SET selections.

					
						set_name: database set name.

					

					
						descriptor_name: descriptor data file name.

					

					
						component_name: component data file name.

					

					
						unit_name: unit data file name.

					

					
						key_name: key data file name.

					

					
						criteria_name: criteria file name.

					

					
						list_set_name: list Scheme file name.

					

				
			DESCRIPTOR

				
				DESCRIPTOR name [, code, keycode]

				
					Local descriptor definition. Scripts can include any number of DESCRIPTORs.

					
						name:
							can extend to more than one line. New lines can be defined by the character '\n' and tabulators by '\t'.
							Adding '\' to the end of a line allows you to continue the string in the next line without adding a new line.
							Inside the string, if the '\' character is doubled (\\), it will lose its control function and simply mean '\'.
							The length of the string (including the new line characters) cannot exceed 255 characters:
							additional characters will be simply cut by the compiler. If you need a longer text, use several DESCRIPTORs.
						

					

					
						code: string, defines a code for the descriptor.

					

					
						keycode: string, reference to a key in an external database.

					

					The key will be assigned to the descriptor.

				
			REF DESCRIPTOR

				
				REF DESCRIPTOR code [, keycode]

				
					Reference by code and keycode string to a descriptor in an external database.

				
			COMPONENT

				
				COMPONENT name, quantity, unit [, proportional_with, code, keycode, unitcode]

				
					Local component definition. Scripts can include any number of COMPONENTs.

					
						name: the name of the component (max. 128 characters).

					

					
						quantity: a numeric expression.

					

					
						unit: the string used for unit description.

					

					
						proportional_with:
							a code between 1 and 6.
							When listing, the component quantity defined above will be automatically multiplied by a value calculated for the current listed element:
						

						1: item,

						2: length,

						3: surface A,

						4: surface B,

						5: surface,

						6: volume.

					

					
						code: string, defines a code for the component.

					

					
						keycode: string, reference to a key in an external database. The key will be assigned to the component.

					

					
						unitcode:
							string, reference to a unit in an external database that controls the output format of the component quantity.
							This will replace the locally defined unit string.
						

					

				
			REF COMPONENT

				
				REF COMPONENT code [, keycode [, numeric_expression]]

				
					
						Reference by code and keycode string to a component in an external database.
						The value to multiply by in the component database can be overwritten by the optional numeric expression specified here.
					

				
			BINARYPROP

				
				BINARYPROP

				
					
						Binaryprop is a reference to the binary properties data (components and descriptors)
						defined in the library part in the Components and Descriptors sections.
					

					
						DATABASE_SET directives have no effect on the binary
						data.
					

				
			SURFACE3D

				
				SURFACE3D ()

				
					The Surface 3D () function gives you the surface of the 3D shape of the library part.

					
						Warning: If you place two or more shapes in the same location with the same parameters,
						this function will give you the total sum of all shapes’ surfaces.
					

				
			VOLUME3D

				
				VOLUME3D ()

				
					The Volume 3D () function gives you the volume of the 3D shape of the library part.

					
						Warning: If you place two or more shapes in the same location with the same parameters,
						this function will give you the total sum of all shapes’ volumes.
					

				
			POSITION

				
				POSITION position_keyword

				
					Effective only in the Component List.

					
						Changes only the type of the element the following descriptors and components are associated to.
						If there are no such directives in the Properties script, descriptors and components will be listed with their default element types.
					

					
						position_keyword: keywords are the following:

						WALLS

						COLUMNS

						BEAMS

						DOORS

						WINDOWS

						OBJECTS

						CEILS

						PITCHED_ROOFS

						LIGHTS

						HATCHES

						ROOMS

						MESHES

					

					
						A directive remains valid for all succeeding DESCRIPTORs and COMPONENTs until the next directive is ascribed.
						A script can include any number of directives.
					

				
				Example:

DESCRIPTOR "\tPainted box.\n\t Properties:\n\
\t\t - swinging doors\n\
\t\t - adjustable height\n\
\t\t - scratchproof"
REF DESCRIPTOR "0001"
s = SURFACE3D () !wardrobe surface
COMPONENT "glue", 1.5, "kg"
COMPONENT "handle", 2*c, "nb" !c number of doors
COMPONENT "paint", 0.5*s, "kg"
POSITION WALLS
REF COMPONENT "0002"

			DRAWING

				
				DRAWING

				
					DRAWING: Refers to the drawing described in the 2D script of the same library part. Use it to place drawings in your bill of materials.

				
			
The Parameter Script

				Parameter lists are sets of possible numerical or string values.
				They can be applied to the parameters as defined in the Parameter Script of the Library Part or in the MASTER_GDL script.
				The parameter has to be of simple type. Type compatibility is verified by the GDL compiler.
			

				The Parameter Script will be interpreted each time a value list type parameter value is to be changed,
				and the possible values defined in the script will appear in a pop-up menu.
			
VALUES

				
				VALUES "parameter_name" [,]value_definition1 [, value_definition2, ...]

				VALUES "fill_parameter_name" [[,] FILLTYPES_MASK fill_types,] value_definition1
 [, value_definition2, ...]

				
					
						parameter_name: name of an existing parameter

					

					
						fill_parameter_name: name of an existing fillpattern type parameter

					

					
						fill_types:
fill_types = j1 + 2*j2 + 4*j3, where each j can be 0 or 1.
	

						j1: cut fills,

						j2: cover fills,

						j3: drafting fills.

					

					
						Can be used for fill-pattern type parameters only.
						The fill popup for this parameter will contain only those types of fills which are specified by the bits set to 1.
						Default is all fills (0).
					

					
						value_definitioni: value definition, can be:

						expression: numerical or string expression, or

						CUSTOM: keyword, meaning that any custom value can be entered, or

						RANGE: range definition, with optional step

						
							RANGE left_delimiter[lower_limit], [upper_limit]right_delimiter [STEP step_start_value, step_value]
						

						
							left_delimiter: [, meaning >=, or (, meaning >;
							lower_limit: lower limit expression;
							upper_limit: upper limit expression;
							right_delimiter:], meaning <=, or), meaning <;
							step_start_value: starting value;
							step_value: step value.
						

					

				
				Example 1:
Simple value lists
VALUES "par1" 1, 2, 3
VALUES "par2" "a", "b"
VALUES "par3" 1, CUSTOM, SIN (30)
VALUES "par4" 4, RANGE(5, 10], 12, RANGE(,20] STEP 14.5, 0.5, CUSTOM

				Example 2:
Read all string values from a file for use in a value list
DIM sarray[]
! file in the library, containing parameter data
filename = "ProjectNotes.txt"
ch1 = OPEN ("text", filename, "MODE=RO, LIBRARY")
i = 1
j = 1
sarray[1] = ""
! collect all strings
DO
 n = INPUT (ch1, i, 1, var)
 IF n > 0 AND VARTYPE (var) = 2 THEN
 sarray[j] = var
 j = j + 1
 ENDIF
 i = i + 1
WHILE n > 0
CLOSE ch1
! parameter popup with strings read from the file
VALUES "RefNote" sarray

			PARAMETERS

				
				PARAMETERS name1 = expression1 [,
 name2 = expression2, ...,
 namen = expressionn]

				
					
						namei: the name of the parameter.

					

					
						expressioni: the new value of the parameter.

					

					Using this command, the parameter values of a Library Part can be modified by the Parameter Script.

					
						The modification will only be effective for the next interpretation. Commands in macros refer to the caller’s parameters.
						If the parameter is a value list, the value chosen will be either an existing value, the custom value, or the first value from the value list.
					

					In addition, the global string variable GLOB_MODPAR_NAME contains the name of the last user-modified parameter.

				
			LOCK

				
				LOCK name1 [, name2, ..., namen]

				
					
						Locks the named parameter(s) in the settings dialog box.
						A locked parameter will appear grayed in the dialog box and its value cannot be modified by the user.
					

				
 LOCK ALL [name1 [, name2, ..., namen]]

 Locks all parameters in the settings dialog box, except those listed after the ALL keyword.

 HIDEPARAMETER

				
				HIDEPARAMETER name1 [, name2, ..., namen]

				
					
						Hides the named parameter(s) and its child parameters in the settings dialog box.
						A parameter hidden using this command in the parameter script will automatically disappear from the parameter list.
					

				
				HIDEPARAMETER ALL [name1 [, name2, ..., namen]]

				
					
						Hides all parameters and its child parameters in the settings dialog box, except those (and their children) listed after the ALL keyword.
					

				
			
The User Interface Script

				Using the following GDL commands, you can define a custom interface for a Library Part’s Custom Settings panel in the settings dialog box.
				If you click the Set as default button in the Library Part editor,
				the custom interface will be used by default in the Object’s (Door’s, Window’s, etc.) settings dialog box.
				Parameters with custom control are not hidden automatically on the original parameter list,
				but they can be hidden manually in the library part editor.
			
	
								[image: ../Images/NonGeom_CustomDialog_inactive.png]

								
								[image: ../Images/NonGeom_CustomDialog_active.png]

							

The origin of the coordinate system is in the top-left corner. Sizes and coordinate values are measured in pixels.
UI_DIALOG

				
				UI_DIALOG title [, size_x, size_y]

				
					
						Defines the title of the dialog box. The default title is 'Custom Settings'.
						Currently, the size of the available area is fixed at 444 x 266 pixels, and the size_x and size_y parameters are not used.
					

					Restriction: The Interface Script should contain only one UI_DIALOG command.

				
			UI_PAGE

				
				UI_PAGE page_number

				
					
						Page directive, defines the page that the interface elements are placed on. Page numbering starts at 1.
						Moving between pages can be defined in two different ways. The first method is to use two buttons created with the UI_NEXT and UI_PREV commands.
						The second way is to create dynamic page handling using the UI_CURRENT_PAGE command.
					

					If there is no UI_PAGE command in the Interface Script, each element will be placed on the first page by default.

					
						Warning: In the simple way of paging, any break of continuity in the page numbering forces the insertion of a new page without buttons,
						and therefore there will be no possibility to go to any other page from there.
						This restriction can be circumvented using the UI_CURRENT_PAGE command.
					

				
			UI_CURRENT_PAGE

				
				UI_CURRENT_PAGE index

				
					Definition of the current tabpage to display.

					
						Warning: Jumping to a non-existent page forces the insertion of a new page without buttons and controls,
						and therefore there is no possibility to go to any other page from there.
					

					
						index: valid index of the UI_PAGE to display.

					

				
			UI_BUTTON

				
				UI_BUTTON type, text, x, y [, width, height, id [, url]]

				
					
						Button definition on current page. Buttons can be used for various purposes:
						moving from page to page, opening a web page or performing some parameter-script defined action.
						Buttons can contain text.
					

					
						type: type of the button as follows:

						UI_PREV: if pressed, the previous page is displayed,

						UI_NEXT: if pressed, the next page is displayed,

						UI_FUNCTION: if pressed, the GLOB_UI_BUTTON_ID global variable is set to the button id specified in expression,

						UI_LINK: if pressed, the URL in expression is opened in the default web browser,

					

					
						text: the text that should appear on the text type button; picture buttons omit this parameter.

					

					
						x, y: the position of the button.

					

					
						width, height: width and height of the button in pixels.
						If not specified (for compatibility reasons) the default values are 60 pixels for width and 20 pixels for height.

					

					
						id: an integer unique identifier.

					

					
						url: a string containing a URL.

					

					
						UI_PREV and UI_NEXT buttons are disabled if the previous/next page is not present.
						If these buttons are pushed, the gs_ui_current_page parameter of the library part is set
						to the index of the page to show - if there’s a parameter with this name.
					

				
				Example:

! UI script
UI_CURRENT_PAGE gs_ui_current_page
UI_BUTTON UI_FUNCTION, "Go to page 9", 200,150, 70,20, 3
UI_BUTTON UI_LINK, "Visit Website", 200,180, 100,20, 0,
 "http://www.graphisoft.com"
! parameter script
if GLOB_UI_BUTTON_ID = 3 then
 parameters gs_ui_current_page = 9, ...
endif

			UI_PICT_BUTTON

				
				UI_PICT_BUTTON type, text, picture_reference,
 x, y, width, height [, id [, url]]

				
					
						Similar to the UI_BUTTON command. But this type of buttons can contain pictures.
					

					
						picture_reference:
							file name or index number of the picture stored in the library part.
							The index 0 refers to the preview picture of the library part.
							Pixel transparency is allowed in the picture.
						

					

					
						text:
							has no effect for picture buttons.
						

					

				
			UI_SEPARATOR

				
				UI_SEPARATOR x1, y1, x2, y2

				
					Generates a separator rectangle. The rectangle becomes a single (vertical or horizontal) separator line if x1 = x2 or y1 = y2

					
						x1, y1: upper left node coordinates (starting point coordinates of the line).

					

					
						x2, y2: lower right node coordinates (endpoint coordinates of the line).

					

				
			UI_GROUPBOX

				
				UI_GROUPBOX text, x, y, width, height

				
					A groupbox is a rectangular separator with caption text. It can be used to visually group logically related parameters.

					
						text: the title of the groupbox.

					

					
						x, y: the position of upper left corner.

					

					
						width, height: width and height in pixels.

					

				
			UI_PICT

				
				UI_PICT picture_reference, x, y [, width, height [, mask]]

				
					Picture element in the dialog box. The picture file must be located in one of the loaded libraries.

					
						picture_reference:
							file name or index number of the picture stored in the library part.
							The index 0 refers to the preview picture of the library part.
						

					

					
						x, y: position of the top left corner of the picture.

					

					
						width, height: optional width and height in pixels; by default, the picture’s original width and height values will be used.

					

					
						mask: alpha + distortion.

					

					
						See the PICTURE command for full explanation.
					

				
			UI_STYLE

				
				UI_STYLE fontsize, face_code

				
					All the UI_OUTFIELDs and UI_INFIELDs generated after this keyword will represent this style until the next UI_STYLE statement.

					
						fontsize: one of the following font size values:

						0: small,

						1: extra small,

						2: large.

					

					
						face_code: similar to the STYLE definition, but the values cannot be used in combination.

						0: normal,

						1: bold,

						2: italic,

						4: underline,

						8: outline,

						16: shadow.

					

					Note
The outline and shadow values are effective only on Macintosh platform and up to the 8.1 version of ArchiCAD.

				
			UI_OUTFIELD

				
				UI_OUTFIELD expression, x, y [, width, height [, flags]]

				
					Generates a static text.

					
						expression: numerical or string expression.

					

					
						x, y: position of the text block’s top left corner.

					

					
						width, height: width and height of the text box.
							If omitted, the text box will wrap around the text as tight as possible for the given font.

					

					
						flags:
flags = j1 + 2*j2 + 4*j3, where each j can be 0 or 1.
	

						j1: horizontal alignment (with j2),

						j2: horizontal alignment (with j1):

						j1 = 0, j2 = 0: Aligns to the left edge (default),

						j1 = 1, j2 = 0: Aligns to the right edge,

						j1 = 0, j2 = 1: Aligns to the center,

						j1 = 1, j2 = 1: Not used,

						j3: grayed text.

					

				
			UI_INFIELD

				
				UI_INFIELD "name", x, y, width, height [,
 method, picture_name,
 images_number,
 rows_number, cell_x, cell_y,
 image_x, image_y,
 expression_image1, text1,
 ...,
 expression_imagen, textn]

			UI_INFIELD{2}

				
				UI_INFIELD{2} name, x, y, width, height [,
 method, picture_name,
 images_number,
 rows_number, cell_x, cell_y,
 image_x, image_y,
 expression_image1, text1,
 ...,
 expression_imagen, textn]

			UI_INFIELD{3}

				
				UI_INFIELD{3} name, x, y, width, height [,
 method, picture_name,
 images_number,
 rows_number, cell_x, cell_y,
 image_x, image_y,
 expression_image1, text1, value_definition1,
 ...,
 expression_imagen, textn, value_definitionn]

				
					
						Generates an edit text or a pop-up menu for the parameter input.
						A pop-up is generated if the parameter type is value list, material, fill, line type or pencolor.
					

					
						If the optional parameters of the command are present, value lists can be alternatively displayed as thumbnail view fields.
						Different thumbnail control types are available.
						They display the specified images and associated texts and allow the selection of one single item at a time, just like in a pop-up menu.
					

					In the version 1 and 2 infield, the thumbnail items and the value list items are associated by indices.

					
						The version 3 infield defines value association which binds the thumbnail items to value list items of the associated parameter.
						If a value defined in a thumbnail item isn’t present in the parameter’s value list, it won’t be displayed in the control.
					

					The Interface Script is rebuilt with the new value after any parameter is modified.

					
						name:
							parameter name as string expression for UI_INFIELD or
							parameter name with optional actual index values if array for UI_INFIELD{2} and UI_INFIELD{3}.

					

					
						x, y: the position of the edit text, pop-up or control.

					

					
						width, height: width and height in pixels.

					

					
						method: the type of the control.

						1: List view control.

						[image: ../Images/NonGeom_infield3_method1_List_view_control.png]

						2: Popup menu control.

						[image: ../Images/NonGeom_infield3_method2_Popup_menu_control.png]

						3: Popup icon radio control.

						[image: ../Images/NonGeom_infield3_method3_popupIconRadioControl.PNG]

						4: Push icon radio control.

						[image: ../Images/NonGeom_infield3_method4_pushIconRadioControl.PNG]

						5: Pushbutton with text.

						[image: ../Images/NonGeom_infield3_method5_pushbuttonWithText.PNG]

						6: Pushbutton with picture.

						[image: ../Images/NonGeom_infield3_method6_pushButtonWithPicture.PNG]

						7: Checkbox with text.

						[image: ../Images/NonGeom_infield3_method7_checkboxWithText.PNG]

						8: Popup list with text.

						[image: ../Images/NonGeom_infield3_method8_popupListWithText.PNG]

					

					
						picture_name: name of the common image file containing a matrix of concatenated images, or empty string.

					

					
						images_number: number of images in the matrix, for boolean parameters it can be 0 or 2.

					

					
						rows_number: number of rows of the matrix.

					

					
						cell_x, cell_y: width and height of a cell within the thumbnail view field, including image and text.

					

					
						image_x, image_y: width and height of the image in the cell.

					

					
						expression_imagei:
							index of image number i in the matrix, or individual file name.
							If a common image file name was specified, indices must be used here.
							Combination of indices and individual file names does not work.
						

					

					
						texti: text in cell number i.

					

					
						value_definitioni: value definition which matches the cell with a value list item by value:

						expression: numerical or string expression, or

						CUSTOM: keyword, meaning that any custom value can be entered.

					

				
				Example 1:

IF c THEN
 UI_DIALOG "Hole definition parameters"
 UI_OUTFIELD "Type of hole:",15,40,180,20
 UI_INFIELD "D",190,40,105,20
 IF d="Rectangular" THEN
 UI_PICT "rect.pict",110,33,60,30
 UI_OUTFIELD "Width of hole",15,70,180,20
 UI_INFIELD "E", 190,70,105,20
 UI_OUTFIELD "Height of hole",15,100,180,20
 UI_INFIELD "F", 190,100,105,20
 UI_OUTFIELD "Distance between holes",15,130,180,20
 UI_INFIELD "G", 190,130,105,20
 ELSE
 UI_PICT "circle.pict",110,33,60,30
 UI_OUTFIELD "Diameter of hole circle",15,70,180,20
 UI_INFIELD "J", 190,70,105,20
 UI_OUTFIELD "Distance of hole centers", 15,100,180,20
 UI_INFIELD "K", 190,100,105,20
 UI_OUTFIELD "Resolution of hole circle", 15,130,180,20
 UI_INFIELD "M", 190,130,105,20
 ENDIF
 UI_OUTFIELD "Number of holes",15,160,180,20
 UI_INFIELD "I", 190,160,105,20
ENDIF
UI_SEPARATOR 50,195,250,195
UI_OUTFIELD "Material of beam", 15,210,180,20
UI_INFIELD "MAT", 190,210,105,20
UI_OUTFIELD "Pen of beam", 15,240,180,20
UI_INFIELD "P", 190,240,105,20
	
										[image: ../Images/NonGeom_ui_ex1_rect.PNG]

										
										[image: ../Images/NonGeom_ui_ex1_circ.PNG]

									

				Example 2:

! Parameter Script:
VALUES "myParameter" "Two", "Three", "Five", CUSTOM

! Interface Script:
px = 80
py = 60
cx = px + 3
cy = py + 25

UI_INFIELD{3} "myParameter", 10, 10, 4 * cx + 21, cy + 5,
 1, "myPicture", 6,
 1, cx, cy, px, py,
 1, "1 - one", "One",
 2, "2 - two", "Two",
 3, "3 - three", "Three",
 4, "4 - four", "Four",
 5, "5 - five", "Five",
 6, "custom value", CUSTOM

			UI_RADIOBUTTON

				
				UI_RADIOBUTTON name, value, text, x, y, width, height

				
					
						Generates a radio button of a radio button group. Radio button groups are defined by the parameter name.
						Items in the same group are mutually exclusive.
					

					
						name: parameter name with optional actual index values if array.

					

					
						value: parameter is set to this value if this radio button is set.

					

					
						text: this text is displayed beside the radio button.

					

					
						x, y: the position of the radio control.

					

					
						width, height: width and height in pixels.

					

				
				Example:

UI_RADIOBUTTON "ceilingPlan", 0, `Floor Plan`, 10, 140, 100, 20
UI_RADIOBUTTON "ceilingPlan", 1, `Ceiling Plan`, 10, 160, 100, 20
[image: ../Images/NonGeom_uiRadiobutton.PNG]

			UI_TOOLTIP

				
				UI_BUTTON type, text, x, y, width, height [, id [, url]] [UI_TOOLTIP tooltiptext]

				UI_PICT_BUTTON type, text, picture_reference,
 x, y, width, height [, id [, url]] [UI_TOOLTIP tooltiptext]

				UI_INFIELD "name", x, y, width, height [, extra parameters ...]
 [UI_TOOLTIP tooltiptext]

				UI_INFIELD{2} name, x, y, width, height [, extra parameters ...]
 [UI_TOOLTIP tooltiptext]

				UI_INFIELD{3} name, x, y, width, height [, extra parameters ...]
 [UI_TOOLTIP tooltiptext]

				UI_RADIOBUTTON name, value, text, x, y, width, height [UI_TOOLTIP tooltiptext]

				UI_OUTFIELD expression, x, y, width, height [, flags] [UI_TOOLTIP tooltiptext]

				UI_PICT expression, x, y [, width, height [, mask]] [UI_TOOLTIP tooltiptext]

				
					
						Defines the tooltip for the control on the user interface page.
						Tooltips are available for buttons, infields, outfields and pictures
						if they are not disabled by the user in the running context (f. ex. in the Help menu of ArchiCAD).
					

					
						tooltiptext: the text to display as tooltip for the control.

					

				
			
The Forward Migration Script

				If an element is changed completely in a newer library, compatibility can be maintained by defining the migration logic.
			
Example:

actualGuid = FROM_GUID
if actualGuid = "203C1090-CF23-41FB-80CF-D0A7E836A12F" then
	gs_bevel = 1
	parameters gs_bevel = gs_bevel
	actualGuid = "58B97788-B2E0-4A5D-B76E-FE32043AFCFD"
endif
if actualGuid = "58B97788-B2E0-4A5D-B76E-FE32043AFCFD" then
	if DELETED_PAR_VALUE ("C", tempC) then parameters D = tempC + 1
	actualGuid = "053D9059-C147-4D44-81DD-785D423B9C5B"
endif
SETMIGRATIONGUID actualGuid

				FROM_GUID is the global variable holding the main ID of the original object which the migration is run on.
			

				In case the script succeeds, the instance gets substituted by the new element with the updated parameters.
			
SETMIGRATIONGUID

				
				SETMIGRATIONGUID guid

				
					
						The command tells the running environment, which element will be the matching migration element for the current object.
						If the returned ID belongs to the current element, the migration of the object gets complete.
					

				
			DELETED_PAR_VALUE

				
				DELETED_PAR_VALUE (oldparname, outputvalue)

				
					
						Retrieves the value of a parameter, which is present in the migrated object but got deleted from the new element running.
						To get the value of an old array Parameter, then outputvalue parameter must be initialized as an array (with the dim command).
					

					
						oldparname: name of the parameter in the old parameter list.

					

					
						outputvalue: output variable to store the value of the parameter.

					

					
						Return value: 1 on success, 0, otherwise (for example, if there is no parameter with that name in the parameter list of the old object).
						During checking the script the return value is always 0, because the old Parameters section is not known.
					

				
			
The Backward Migration Script

				Via the Backward Migration script you can define the backward conversion logic converting new object instances to older ones.
			
Example:

bContinue=1
if bContinue then
	! from 1E75F651-EE95-4223-BD36-4A6D870B54E3 to 07F20B81-41FF-49B4-99DC-7E9714ACE246
	! backward compatible - no conversion needed
	targetGuid = "07F20B81-41FF-49B4-99DC-7E9714ACE246"
	if TO_GUID = "07F20B81-41FF-49B4-99DC-7E9714ACE246" then bContinue = 0
endif
if bContinue then
	! from 07F20B81-41FF-49B4-99DC-7E9714ACE246 to 7ED73E3C-D871-447E-B3A1-F822A16D47D9
	parameters oldParStillExisting = oldParStillExisting - 1
	newparameter "oldParDeleted", "String"
	if newPar = 1 then
		oldParDeleted = "Alpha"
	else
		oldParDeleted = "Beta"
	endif
	parameters oldParDeleted = oldParDeleted
	targetGuid = "7ED73E3C-D871-447E-B3A1-F822A16D47D9"
	if TO_GUID = "7ED73E3C-D871-447E-B3A1-F822A16D47D9" then bContinue = 0
endif
SETMIGRATIONGUID targetGuid

				TO_GUID is the global variable holding the main ID of the target element in the conversion.
			

				See the SETMIGRATIONGUID command actualGuid.
			
NEWPARAMETER

				
				NEWPARAMETER name, type [, dim1 [, dim2]]

				
					
						Adds a new parameter to the parameters of a library part in the Backward Migration Script.
						The parameter creation happens only after the full interpretation of the script.
						If a parameter with the given name already exists in the parameters list, an error occurs.
					

					
						name: name of the parameter to be created.

					

					
						type: type of the parameter. Possible values are:

						Integer

						Length

						Angle

						RealNum

						LightSwitch

						ColorRGB

						Intensity

						LineType

						Material

						FillPattern

						PenColor

						String

						Boolean

					

					
						dim1, dim2:
							dim1 is the first dimension of the parameter, 0 if not set. dim2 is the second dimension of the parameter, 0 if not set.
						

						dim1 = 0, dim2 = 0: the parameter is a scalar parameter,

						dim1 > 0, dim2 = 0: the parameter is a 1 dimensional array,

						dim1 > 0, dim2 > 0: the parameter is a 2 dimensional array,

					

					
						If dim2 > 0, then dim1 > 0.

					
				
			
Chapter 10. Expressions and Functions

			All parameters of GDL shapes can be the result of calculations.
			For example, you can define that the height of the cylinder is five times the radius of the cylinder, or prior to defining a cube,
			you can move the coordinate system in each direction by half the size of the cube,
			in order to have the initial origin in the center of the cube rather than in its lower left corner.
			To define these calculations, GDL offers a large number of mathematical tools: expressions, operators and functions.
		
Expressions

				You can write compound expressions in GDL statements. Expressions can be of numerical and string type.
				They are constants, variables, parameters or function calls and any combination of these in operators.
				Round bracket pairs (()) (precedence 1) are used to override the default precedence of the operators.
			

				Simple type variables can be given numerical and string values, even in the same script,
				and can be used in numerical and string type expressions respectively.
				Operations resulting in strings CANNOT be used directly as macro names in macro calls,
				or as attribute names in material, fill, line type or style definitions.
				Variables given a string value will be treated as such and can be used wherever string values are required.
				If later in the script the same variable is given a numerical value,
				it will be usable in numerical expressions only until it is given a string value again.
				Where possible, in the precompilation process the type of the expressions is checked.
			
GDL supports one and two dimensional arrays. Variables become arrays after a declaration statement, in which their dimensions are specified.
DIM

				
				DIM var1[dim_1], var2[dim_1][dim_2], var3[],
 var4[][], var5[dim_1][],
 var5[][dim_2]

				
					
						After the DIM keyword there can be any number of variable names separated by commas.
						var1, var2, ... are the array names, while the numbers between the brackets represent the dimensions of the array (numerical constants).
						Variable expressions cannot be used as dimensions.
						If they are missing, the array is declared to be dynamic (one or both dimensions).
					

					
						Library part parameters can also be arrays. Their actual dimensions are specified in the library part dialog.
						Parameter arrays do not have to be declared in the script and they are dynamic by default.
						When referencing the library part using a CALL statement, the actual values of an array parameter can be an array with arbitrary dimensions.
					

					The elements of the arrays can be referenced anywhere in the script but if they are variables, only after the declaration.

					var1[num_expr] or var1

					var2[num_expr1][num_expr2] or var2[num_expr1] or var2

					
						Writing the array name without actual indices means referencing the whole array (or a line of a two-dimensional array)
						which is accepted in some cases (CALL, PRINT, LET, PUT, REQUEST, INPUT, OUTPUT, SPLIT statements).
						For dynamic arrays there is no limitation for the actual index value. During the interpretation,
						when a non-existing dynamic array element is given a value,
						the necessary quantity of memory is allocated and the missing elements are all set to 0 (numerical).
					

					
						Warning! This may cause an unexpected out of memory error in some cases.
						Each index - even of a possibly wrong, huge value - is considered valid, since the interpreter is unable to detect the error condition.
						A non-existing dynamic array element is 0 (numerical).
					

					
						Arrays having a fixed dimension are checked for the validity of the actual index on the fixed dimension.
						Array variables with fixed length cannot accept dynamic array values in assignments.
						However, dynamic arrays that are given whole array values will take on those values.
						This also applies to some statements where whole array references can be used as return parameters. (REQUEST, INPUT, SPLIT).
					

					Array elements can be used in any numerical or string expression. They can be given string or numerical values.

					Indices start with 1, and any numerical expression can be used as an index.

					
						Array elements can be of different simple types (numerical, string, group).
						The type of the whole array (main type) is the type of its first element ([1] or [1][1]).
						Parameter and global variable arrays cannot be of mixed type.
					

				
			VARDIM1

				
				VARDIM1 (expr)

			VARDIM2

				
				VARDIM2 (expr)

				
					
						These functions return as integers the actual dimension values for the (array) expression specified as a parameter.
						They must be used if you want to handle correctly all actual elements of a dynamic array or an array parameter.
						If no element of a dynamic array was previously set, the return value is 0. For one-dimensional arrays VARDIM2 returns 0.
					

				
				Example 1:
Examples for numeric expressions:
Z
5.5
(+15)
-x
a*(b+c)
SIN(x+y)*z
a+r*COS(i*d)
5' 4"
SQR (x^2 + y^2) / (1 - d)
a + b * sin (alpha)
height * width

				Example 2:
Examples for string expressions:
"Constant string"
name + STR ("%m", i) + "." + ext
string_param <> "Mode 1"

				Example 3:
Examples for expressions using array values:
DIM tab[5], tab2[3][4] ! declaration
tab[1] + tab[2]
tab2[2][3] + A
PRINT tab
DIM f1 [5], v1[], v2[][]
v1[3] = 3 ! v1[1] = 0, v1[2] = 0, array of 3 elements
v2[2][3] = 23 ! all other elements(2 X 3) = 0
PRINT v1, v2
DIM f1 [5], v1[], v2[][]
FOR i = 1 TO VARDIM1(f1)
 f1[i] = i
NEXT i
v1 = f1
v2 [1] = f1
PRINT v1, v2

			
Operators

				The operators below are listed in order of decreasing precedence.
				The evaluation of an expression begins with the highest precedence operator and from left to right.
			
Arithmetical Operators

	
									^ (or **)
									
									Power of
									
									precedence 2
								
	
									*
									
									Multiplication
									
									precedence 3
								
	
									/
									
									Division
									
									precedence 3
								
	
									MOD (or %)

									
									Modulo (remainder of division)
									x MOD y = x - y * INT (x/y)
									
									precedence 3
								
	
									+
									
									Addition
									
									precedence 4
								
	
									-
									
									Subtraction
									
									precedence 4
								

Note

					+ (addition) can also be applied to string expressions: the result is the concatenation of the strings.
					The result of the '/' (Division) is always a real number, while the result of the other operations depends on the type of the operands:
					if all operands are integer, the result will be integer, otherwise real.
				

Relational Operators

	
									=
									
									Equal
									
									precedence 5
								
	
									<
									
									Less than
									
									precedence 5
								
	
									>
									
									Greater than
									
									precedence 5
								
	
									<=
									
									Less than or equal
									
									precedence 5
								
	
									>=
									
									Greater than or equal
									
									precedence 5
								
	
									<> (or #)
									
									Not equal
									
									precedence 5
								

Note

					These operators can be used between any two string expressions also (string comparison is case sensitive).
					The result is an integer, 1 or 0.
					There is not recommended to use the '=' (Equal), '<=' (Less than or equal), '>=' (Greater than or equal),
					'<>' (or #) (Not equal) operators with real operands, as these operations can result in precision problems.
				

Boolean Operators

	
									AND (or &)

									
									Logical and
									
									precedence 6
								
	
									OR (or |)

									
									Logical inclusive or
									
									precedence 7
								
	
									EXOR (or @)

									
									Logical exclusive or
									
									precedence 8
								

Note

					Boolean operators work with integer numbers.
					In consequence, 0 means false, while any other number means true.
					The value of a logical expression is also integer, i.e., 1 for true and 0 for false.
					It is not recommended to use boolean operators with real operands, as these operations can result in precision problems.
				

Functions

Arithmetical Functions

ABS

					
					ABS (x)

					
						Returns the absolute value of x (integer if x integer, real otherwise).

					
				CEIL

					
					CEIL (x)

					
						Returns the smallest integral value that is not smaller than x (always integer). (e.g., CEIL(1.23) = 2; CEIL (-1.9) = -1).

					
				INT

					
					INT (x)

					
						Returns the integral part of x (always integer). (e.g., INT(1.23) = 1, INT(-1.23) = -2).

					
				FRA

					
					FRA (x)

					
						Returns the fractional part of x (integer 0 if x integer, real otherwise). (e.g., FRA(1.23) = 0.23, FRA(-1.23) = 0.77).

					
				ROUND_INT

					
					ROUND_INT (x)

					
						Returns the rounded integer part of x. The 'i = ROUND_INT (x)' expression is equivalent with the following script:

						IF x < 0.0 THEN i = INT (x - 0.5) ELSE i = INT (x + 0.5)

					
				SGN

					
					SGN (x)

					
						Returns +1 integer if x positive, -1 integer if x negative, otherwise 0 integer.

					
				SQR

					
					SQR (x)

					
						Returns the square root of x (always real).

					
				
Circular Functions

These functions use degrees for arguments (COS, SIN, TAN) and for return values (ACS, ASN, ATN).
ACS

					
					ACS (x)

					
						
							Returns the arc cosine of x. (-1.0 <= x <= 1.0; 0°
							<= ACS(x) <= 180°).
						

					
				ASN

					
					ASN (x)

					
						
							Returns the arc sine of x. (-1.0 <= x <= 1.0; -90°
							<= ASN(x) <= 90°).
						

					
				ATN

					
					ATN (x)

					
						Returns the arc tangent of x. (-90° <= ATN(x) <= 90°).

					
				COS

					
					COS (x)

					
						Returns the cosine of x.

					
				SIN

					
					SIN (x)

					
						Returns the sine of x.

					
				TAN

					
					TAN (x)

					
						Returns the tangent of x.

					
				PI

					
					PI

					
						Returns Ludolph’s constant. (p = 3.1415926...).

						Note
All return values are real.

					
				
Transcendental Functions

EXP

					
					EXP (x)

					
						Returns the x th power of e (e = 2.7182818).

					
				LGT

					
					LGT (x)

					
						Returns the base 10 logarithm of x.

					
				LOG

					
					LOG (x)

					
						Returns the natural logarithm of x.

						Note
All returned values are real.

					
				
Boolean Functions

NOT

					
					NOT (x)

					
						Returns false (=0 integer) if x is true (<>0), and true (=1 integer) if x is false (=0)(logical negation).

						Note
Parameter value should be integer.

					
				
Statistical Functions

MIN

					
					MIN (x1, x2, ... xn)

					
						Returns the smallest of an unlimited number of arguments.

					
				MAX

					
					MAX (x1, x2, ... xn)

					
						Returns the largest of an unlimited number of arguments.

					
				RND

					
					RND (x)

					
						Returns a random value between 0.0 and x (x > 0.0) always real.

					
				
Bit Functions

BITTEST

					
					BITTEST (x, b)

					
						Returns 1 if the b bit of x is set, 0 otherwise.

					
				BITSET

					
					BITSET (x, b [, expr])

					
						
							expr can be 0 or different, the default value is 1.
							Sets the b bit of x to 1 or 0 depending on the value of the specified expression, and returns the result.
							Parameter value should be integer, returned value is integer.
						

					
				
Special Functions

					Special functions (besides global variables) can be used in the script to communicate with the executing program.
					They either ask the current state and different preferences settings of the program, or refer to the current environment of the library part.
					Request calls can also be used to communicate with GDL extensions.
				
REQ

					
					REQ (parameter_string)

					
						
							Asks the current state of the program. Its parameter - the question - is a string. The GDL interpreter answers with a numeric value.
							If it does not understand the question, the answer is negative.
						

						
							parameter_string: question string, one of the following:

							"GDL_version": version number of the GDL compiler/interpreter. Warning: it is not the same as the ArchiCAD version.

							"Program": code of the program (e.g., 1: ArchiCAD),

							"Serial_number": the serial number of the keyplug,

							"Model_size": size of the current 3D data structure in bytes,

							"Red_of_material name"

							"Green_of_material name"

							"Blue_of_material name": Defines the given material’s color components in RGB values between 0 and 1,

							"Red_of_pen index"

							"Green_of_pen index"

							"Blue_of_pen index": Defines the given pen’s color components in RGB values between 0 and 1,

							"Pen_of_RGB r g b":
								Defines the index of the pen closest to the given color.
								The r, g and b constants’ values are between 0 and 1.
							

						

					
				REQUEST

					
					REQUEST (question_name, name | index, variable1 [, variable2, ...])

					
						
							The first parameter represents the question string while the second represents the object of the question (if it exists)
							and can be of either string or numeric type (for example, the question can be "Rgb_of_material" and its object the material’s name,
							or "Rgb_of_pen" and its object the index of the pen). The other parameters are variable names in which the return values (the answers) are stored.
						

						
							The return value of the requests is always the number of successfully retrieved values (integer),
							while the type of the retrieved values is defined by each request in part.
							In the case of a badly formulated question or a nonexistent name, the return value will be 0.
						

						
							For the list of available options see the section called “REQUEST Options”.
						

					
				IND

					
					IND (MATERIAL, name_string

					IND (FILL, name_string)

					IND (LINE_TYPE, name_string)

					IND (STYLE, name_string)

					IND (TEXTURE, name_string)

					
						
							This function returns the current index of the material, fill, line type or style and texture attribute.
							The main use of the resulting number is to transfer it to a macro that requires the same attribute as the calling macro.
						

						
							The functions return an attribute index (integer) value.
							The result is negative for temporary definitions (inside the script or from Master_GDL file)
							and positive for global definitions (from the project attributes).
						

						
							See also the section called “Inline Attribute Definition”.
						

					
				APPLICATION_QUERY

					
					APPLICATION_QUERY (extension_name, parameter_string, variable1, variable2, ...)

					
						
							GDL allows a way for the individual applications to provide specific request functions in their context.
							These query options aren’t defined in the GDL syntax; consult the GDL developer documentation of the given application for specific options.
							Basic Library Documentation applies for ArchiCAD.
						

					
				LIBRARYGLOBAL

					
					LIBRARYGLOBAL (object_name, parameter, value)

					
						
							Fills value with the current model view option parameter value of the library global object defined by object_name if available.
							A library global setting is available if the global object is currently loaded in the library,
							or was loaded earlier and its setting was saved in the current model view option combination.
						

						Returns 1 if successful, 0 otherwise.

						
							object_name: name of library global object. Must be a string constant.
								Warning: If string variables or parameters are used as object names, then the 2d and 3d view of objects querying
								this library global object will not refresh automatically.
							

						

						
							parameter: name of requested parameter.

						

						
							value: filled with the requested parameter value.

						

					
					Example:

success = LIBRARYGLOBAL ("MyGlobalOptions", "detLevel2D", det)
if success > 0 then
 text2 0, 0, det
else
 text2 0, 0, "Not available"
endif

				
String Functions

STR

					
					STR (numeric_expression, length, fractions)

					STR (format_string, numeric_expression)

					
						
							The first form of the function creates a string from the current value of the numeric expression.
							The minimum number for numerical characters in the string is length, while fractions represents the numbers following the floating point.
							If the converted value has more than length characters, it is expanded as required.
							If it has fewer characters, it is padded on the left (length > 0) or on the right (length < 0).
						

						
							In the second form, the format_string can either be a variable or a constant.
							If the format is empty, it is interpreted as meters, with an accuracy of three decimals (displaying 0s).
						

					
					Example:

a=4.5
b=2.345
TEXT2 0, 2, STR(a, 8, 2) ! 4.50
TEXT2 0, 1, STR(b, 8, 2) ! 2.34
TEXT2 0, 0, STR(a*b, 8, 2) ! 10.55

				STR{2}

					
					STR{2} (format_string, numeric_expression [, extra_accuracy_string])

					
						
							Extension of the second form of STR.
							If the extra accuracy flags are set in the format_string,
							then the STR{2} function will return the corresponding extra accuracy string in the 3rd parameter.
						

						
							format_string: "%[0 or more flags][field_width][.precision] conv_spec"

						

						
							flags: (for m, mm, cm, e, df, di, sqm, sqcm, sqf, sqi, dd, gr, rad, cum, l, cucm, cumm, cuf, cui, cuy, gal):

							(none): right justify (default),

							-: left justify,

							+: explicit plus sign,

							(space): in place of a + sign,

							'*' 0: extra accuracy Off (default),

							'*' 1: extra accuracy .5,

							'*' 2: extra accuracy .25,

							'*' 3: extra accuracy .1,

							'*' 4: extra accuracy .01,

							'*' 5: extra accuracy .5,

							'*' 6: extra accuracy .25,

							'#': don’t display 0s (for m, mm, cm, df, di, sqm, sqcm, sqf, sqi, dd, fr, rad, cum, l, cucm, cumm, cuf, cui, cuy, gal),

							'0': display 0 inches (for ffi, fdi, fi),

							'~': hide 0 decimals (effective only if the '#' flag is not specified) (for m, mm, cm, fdi, df, di, sqm, sqcm, sqf, sqi, dd, fr, rad, cum, l, cucm, cumm, cuf, cui, cuy, gal),

							'^':
								do not change decimal separator and digit grouping characters
								(if not specified, these characters will be replaced as set in the current system).
							

						

						
							field_width: unsigned decimal integer, the minimum number of characters to generate.

						

						
							precision: unsigned decimal integer, the number of fraction digits to generate.

						

						
							conv_spec: (conversion specifier):

							e: exponential format (meter),

							m: meters,

							mm: millimeters,

							cm: centimeters,

							ffi: feet & fractional inches,

							fdi: feet & decimal inches,

							df: decimal feet,

							fi: fractional inches,

							di: decimal inches,

							pt: points,

							for areas:

							sqm: square meters,

							sqcm: square centimeters,

							sqmm: square millimeters,

							sqf: square feet,

							sqi: square inches,

							for angles:

							dd: decimal degrees,

							dms: degrees, minutes, seconds,

							gr: grads,

							rad: radians,

							surv: surveyors unit,

							for volumes:

							cum: cubic meters,

							l: liters,

							cucm: cubic centimeters,

							cumm: cubic millimeters,

							cuf: cubic feet,

							cui: cubic inches,

							cuy: cubic yards,

							gal: gallons.

						

					
					Example:

nr = 0.345678
TEXT2 0, 23, STR ("%m", nr) !0.346
TEXT2 0, 22, STR ("%#10.2m", nr) !35
TEXT2 0, 21, STR ("%.4cm", nr) !34.5678
TEXT2 0, 20, STR ("%12.4cm", nr) ! 34.5678
TEXT2 0, 19, STR ("%.6mm", nr) !345.678000
TEXT2 0, 18, STR ("%+15e", nr) !+3.456780e-01
TEXT2 0, 17, STR ("%ffi", nr) !1'-2"
TEXT2 0, 16, STR ("%0.16ffi", nr) !1'-1 5/8"
TEXT2 0, 15, STR ("% .3fdi", nr) ! 1'-1.609"
TEXT2 0, 14, STR ("% -10.4df", nr) ! 1.1341'
TEXT2 0, 13, STR ("%0.64fi", nr) !13 39/64"
TEXT2 0, 12, STR ("%+12.4di", nr)!+13.6094"
TEXT2 0, 11, STR ("%#.3sqm", nr) !346
TEXT2 0, 10, STR ("%+sqcm", nr) !+3,456.78
TEXT2 0, 9, STR ("% .2sqmm", nr)! 345,678.00
TEXT2 0, 8, STR ("%-12sqf", nr) !3.72
TEXT2 0, 7, STR ("%10sqi", nr) ! 535.80
TEXT2 0, 6, STR ("%.2pt", nr) !0.35
alpha = 88.657
TEXT2 0, 5, STR ("%+10.3dd", alpha) !+88.657°
TEXT2 0, 4, STR ("%.1dms", alpha) !88°39'
TEXT2 0, 3, STR ("%.2dms", alpha) !88°39'25"
TEXT2 0, 2, STR ("%10.4gr", alpha) ! 98.5078G
TEXT2 0, 1, STR ("%rad", alpha) !1.55R
TEXT2 0, 0, STR ("%.2surv", alpha) !N 1°20'35" E

				SPLIT

					
					SPLIT (string, format, variable1 [, variable2, ..., variablen])

					
						
							Splits the string parameter according to the format in one or more numeric or string parts.
							The split process stops when the first non-matching part is encountered. Returns the number of successfully read values (integer).
						

						
							string: the string to be split.

						

						
							format:
								any combination of constant strings, %s, %n and %^n -s.
								Parts in the string must fit the constant strings, %s denotes any string value delimited by spaces or tabs,
								while %n or %^n denotes any numeric value. If the '^' flag is present, current system settings for decimal separator and
 digit grouping characters are taken into consideration when matching the actual numerical value.
							

						

						
							variablei: names of the variables to store the split string parts.

						

					
					Example:

ss = "3 pieces 2x5 beam"
n = SPLIT (ss, "%n pieces %nx%n %s", num, ss1, size1, ss2, size2, name)
IF n = 6 THEN
 PRINT num, ss1, size1, ss2, size2, name ! 3 pieces 2 x 5 beam
ELSE
 PRINT "ERROR"
ENDIF

				STW

					
					STW (string_expression)

					
						
							Returns the (real) width of the string in millimeters displayed in the current style.
							The width in meters, at current scale, is STW (string_expression) / 1000 * GLOB_SCALE.
						

					
					Example:

[image: ../Images/ExpFunct_stw.png]
DEFINE STYLE "own" "Gabriola", 180000 / GLOB_SCALE, 1, 0
SET STYLE "own"
string = "abcd"
width = STW (string) / 1000 * GLOB_SCALE
n = REQUEST ("Height_of_style", "own", height)
height = height / 1000 * GLOB_SCALE
TEXT2 0,0, string
RECT2 0,0, width, -height

				STRLEN

					
					STRLEN (string_expression)

					
						Returns the (integer) length of the string (the number of characters)

					
				STRSTR

					
					STRSTR (string_expression1, string_expression2)

					
						
							Returns the (integer) position of the first appearance of the second string in the first string.
							If the first string doesn’t contain the second one, the function returns 0.
						

					
					Example:

szFormat = ""
n = REQUEST ("Linear_dimension", "", szFormat)
unit = ""
IF STRSTR (szFormat, "m") > 0 THEN unit = "m"
IF STRSTR (szFormat, "mm") > 0 THEN unit = "mm"
IF STRSTR (szFormat, "cm") > 0 THEN unit = "cm"
TEXT2 0, 0, STR (szFormat, a) + " " + unit !1.00 m

				STRSUB

					
					STRSUB (string_expression, start_position, characters_number)

					
						
							Returns a substring of the string parameter that begins at the position given by the start_position parameter
							and its length is characters_number characters.
						

					
					Example:

string = "Flowers.jpeg"
len = STRLEN (string)
iDotPos = STRSTR (string, ".")
TEXT2 0, -1, STRSUB (string, 1, iDotPos - 1) !Flowers
TEXT2 0, -2, STRSUB (string, len - 4, 5) !.jpeg

				

Chapter 11. Control Statements

			
				This chapter reviews the GDL commands available for controlling loops and subroutines in scripts
				and introduces the concept of buffer manipulation designed to store parameter values for further use.
				It also explains how to use objects as macro calls and how to display calculated expressions on screen.
			
		
Flow Control Statements

FOR - TO - NEXT

				
				FOR variable_name = initial_value TO end_value [STEP step_value] NEXT variable_name

				
					FOR is the first statement of a FOR loop.

					NEXT is the last statement of a FOR loop.

					
						The loop variable varies from the initial_value to the end_value by the step_value increment (or decrement)
						in each execution of the body of the loop (statements between the FOR and NEXT statements).
						If the loop variable exceeds the value of the end_value, the program executes the statement following the NEXT statement.
					

					If the STEP keyword and the step_value are missing, the step is assumed to be 1.

					Note
Changing the step_value during the execution of the loop has no effect.

					A global variable is not allowed as a loop control variable.

				
				Example 1:

FOR i=1 TO 10 STEP 2
 PRINT i
NEXT i

				Example 2:

! The two program fragments below are equivalent:

! 1st
a = b
1:
IF c > 0 AND a > d OR c < 0 AND a < d THEN 2
PRINT a
a = a + c
GOTO 1

! 2nd
2:
FOR a = b TO d STEP c
 PRINT a
NEXT a
The above example shows that step_value = 0 causes an infinite loop.

						Only one NEXT statement is allowed after a FOR statement.
						You can exit the loop with the GOTO command and to return after leaving,
						but you cannot enter a loop skipping the FOR statement.
					

			DO - WHILE

				
				DO [statment1
 statement2
 ...
 statementn]
WHILE condition

				
					The statements between the keywords are executed as long as the condition is true.

					The condition is checked after each execution of the statements.

				
			WHILE - ENDWHILE

				
				WHILE condition DO
 [statement1
 statement2
 ...
 statementn]
ENDWHILE

				
					The statements between the keywords are executed as long as the condition is true.

					The condition is checked before each execution of the statements.

				
			REPEAT - UNTIL

				
				REPEAT [statement1
 statement2
 ...
 statementn]
UNTIL condition

				
					The statements between the keywords are executed until the condition becomes true.

					The condition is checked after each execution of the statements.

				
				Example:
The following four sequences of GDL commands are equivalent
! 1st
FOR i = 1 TO 5 STEP 1
 BRICK 0.5, 0.5, 0.1
 ADDZ 0.3
NEXT i

! 2nd
i = 1
DO
 BRICK 0.5, 0.5, 0.1
 ADDZ 0.3
 i = i + 1
WHILE i <= 5

! 3rd
i = 1
WHILE i <= 5 DO
 BRICK 0.5, 0.5, 0.1
 ADDZ 0.3
 i = i + 1
ENDWHILE

! 4th
i = 1
REPEAT
 BRICK 0.5, 0.5, 0.1
 ADDZ 0.3
 i = i + 1
UNTIL i > 5

			IF - GOTO

				
				IF condition THEN label
IF condition GOTO label
IF condition GOSUB label

				
					
						Conditional jump statement. If the value of the condition expression is 0 (logical 'false'), the command has no effect,
						otherwise execution continues at the label. THEN, GOTO or THEN GOTO are equivalent in this context.
					

				
				Example:

IF a THEN 28
IF i > j GOTO 200+i*j
IF i > 0 GOSUB 9000

			IF - THEN - ELSE - ENDIF

				
				IF condition THEN statement [ELSE statement]

				IF condition THEN
 [statement1
 statement2
 ...
 statementn]
[ELSE
 statementn+1
 statementn+2
 ...
 statementn+m]
ENDIF

				
					
						If you write only one command after keywords THEN and/or ELSE in the same row, there is no need for ENDIF.
						A command after THEN or ELSE in the same row means a definite ENDIF.
					

					
						If there is a new row after THEN, the successive commands
						(all of them until the keyword ELSE or ENDIF) will only be executed if the expression in the condition is true (other than zero).
						Otherwise, the commands following ELSE will be carried out. If the ELSE keyword is absent, the commands after ENDIF will be carried out.
					

				
				Example:

IF a = b THEN height = 5 ELSE height = 7
IF needDoors THEN
 CALL "door_macro" PARAMETERS
 ADDX a
ENDIF
IF simple THEN
 HOTSPOT2 0, 0
 RECT2 a, 0, 0, b
ELSE PROJECT2 3, 270, 1
IF name = "Sphere" THEN
 ADDY b
 SPHERE 1
ELSE
 ROTX 90
 TEXT 0.002, 0, name
ENDIF

			GOTO

				
				GOTO label

				
					
						Unconditional jump statement. The program executes a branch to the statement denoted by the value of the label (numerical or string).
						Variable label expressions can slow down interpretation due to runtime jumping address determination.
					

				
				Example:

GOTO K+2

			GOSUB

				
				GOSUB label

				
					
						Internal subroutine call where the label is the entry point of the subroutine. Label value can be any numerical or string expression.
						Variable label expressions can slow down interpretation due to runtime jumping address determination.
					

				
			RETURN

				
				RETURN

				
					Return from an internal subroutine.

				
			END / EXIT

				
				END [v1, v2, ..., vn]

				EXIT [v1, v2, ..., vn]

				
					
						End of the current GDL script. The program terminates or returns to the level above.
						It is possible to use several ENDs or EXITs in a GDL file. If the optional list of values is specified,
						the current script will pass these return values to its caller.
					

					
						See the description of receiving returned parameters at the CALL command.
					

				
			BREAKPOINT

				
				BREAKPOINT expression

				
					
						With this command, you can specify a breakpoint in the GDL script.
						The GDL debugger will stop at this command if the value of the parameter (a numeric expression) is true (1)
						and the Enable Breakpoints option of the debugger is checked.
						In normal execution mode, the GDL interpreter simply steps over this command.
					

				
			
Parameter Buffer Manipulation

				The parameter buffer is a built-in data structure
				that may be used if some values (coordinates, for example) change after a definite rule that can be described using a mathematical expression.
				This is useful if, for instance, you want to store the current values of your variables.
			
[image: ../Images/ControlStat_buffer_put.png]

				The parameter buffer is an infinitely long array in which you can store numeric values using the PUT command.
				PUT stores the given values at the end of the buffer.
				These values can later be used (by the GET and USE commands) in the order in which they were entered
				(i.e., the first stored value will be the first one used).
				A GET(n) or USE(n) command is equivalent with n values separated by commas.
				This way, they can be used in any GDL parameter list where n values are needed.
			
[image: ../Images/ControlStat_buffer_get.png]
[image: ../Images/ControlStat_buffer_use.png]
PUT

				
				PUT expression [, expression, ...]

				
					Store the given values in the given order in the internal parameter buffer.

				
			GET

				
				GET (n)

				
					Use the next n values from the internal parameter buffer and then disregard them.

				
			USE

				
				USE (n)

				
					
						Use the next n values from the internal parameter buffer without deleting them.
						Following USE and GET functions can use the same parameter sequence.
					

				
			NSP

				
				NSP

				
					Returns the number of stored parameters in the internal buffer.

				
				Example:
Using the parameter buffer:
	
										r=2: b=6: c=4: d=10
n=12

s=180/n
FOR t=0 TO 180 STEP s
 PUT r+r*COS(T), c-r*SIN(t), 1
NEXT t
FOR i=1 TO 2
 EXTRUDE 3+NSP/3, 0,0,d, 1+16,
 0, b, 0,
 2*r, b, 0,
 USE(NSP),
 0, b, 0
 MULY -1
NEXT i
DEL 1
ADDZ d
REVOLVE 3+NSP/3, 180, 0,
 0, b, 0,
 2*r, b, 0,
 GET(NSP),
 0, b, 0

										
										[image: ../Images/ControlStat_buffer_ex.png]

									

						The full description:
					
r=2: b=6: c=4: d=10
FOR i=1 TO 2
 EXTRUDE 16, 0,0,d, 1+16,
 0, b, 0,
 2*r, b, 0,
 2*r, c, 1,
 r+r*COS(15), c-r*SIN(15), 1,
 r+r*COS(30), c-r*SIN(30), 1,
 r+r*COS(45), c-r*SIN(45), 1,
 r+r*COS(60), c-r*SIN(50), 1,
 r+r*COS(75), c-r*SIN(75), 1,
 r+r*COS(90), c-r*SIN(90), 1,
 r+r*COS(105), c-r*SIN(105), 1,
 r+r*COS(120), c-r*SIN(120), 1,
 r+r*COS(135), c-r*SIN(135), 1,
 r+r*COS(150), c-r*SIN(150), 1,
 R+R*COS(165), c-r*SIN(165), 1,
 0, b, 1,
 0, b, 0
 MULY -1
NEXT i
DEL 1
ADDZ d
REVOLVE 16, 180, 0,
 0, b, 0,
 2*r, b, 0,
 2*r, c, 1,
 r+r*COS(15), c-r*SIN(15), 1,
 r+r*COS(30), c-r*SIN(30), 1,
 r+r*COS(45), c-r*SIN(45), 1,
 r+r*COS(60), c-r*SIN(50), 1,
 r+r*COS(75), c-r*SIN(75), 1,
 r+r*COS(90), c-r*SIN(90), 1,
 r+r*COS(105), c-r*SIN(105), 1,
 r+r*COS(120), c-r*SIN(120), 1,
 r+r*COS(135), c-r*SIN(135), 1,
 r+r*COS(150), c-r*SIN(150), 1,
 r+r*COS(165), c-r*SIN(165), 1,
 0, b, 1,
 0, b, 0

			
Macro Objects

 Although the 3D objects you may need can always be broken down into complex or primitive elements,
 sometimes it is desirable to define these complex elements specifically for certain applications.
 These individually defined elements are called macros.
 A GDL macro has its own environment which depends on its calling order. The current values of the
 MODEL, RADIUS, RESOL, TOLER, PEN, LINE_TYPE, MATERIAL, FILL, STYLE, SHADOW
 options and the current transformation are all valid in the macro.
 You can use or modify them, but the modifications will only have an effect locally.
 They do not take effect on the level the macro was called from.
 Giving parameters to a macro call means an implicit value assignment on the macro’s level.
 The parameters A and B are generally used for resizing objects.

CALL

				
			
				CALL macro_name_string [,]
 PARAMETERS [ALL][name1=value1, ... namen=valuen][[,]
 RETURNED_PARAMETERS r1, r2, ...]

				

 macro_name_string: string, the name of an existing library part

 Macro names cannot be longer than 31 characters.
 Macro names can be string constants, string variables or parameters. String operations cannot be used with a macro call as a macro name.
 						 Warning: If string variables or parameters are used as macro names, the called macro may not be included in the archive project.
						 To let ArchiCAD know about the dependency, use the FILE_DEPENDENCE command for each possible macro name.
 The macro name must be put between quotation marks (",',`,´,”,’,“,‘), unless it matches the definition of identifiers,
 i.e., it begins with a letter or a '_' or '~' character and contains only letters, numbers and the '_' and '~' characters.
 Otherwise, the quotation marks used in the CALL command must be the same at the beginning and at the end,
 and should be different from any character of the macro name. Macro name itself also can be used as a command, without the CALL keyword.

					
						PARAMETERS: the actual parameter list of the macro can follow

						 The parameter names of the called macro can be listed in any sequence, with both an '=' sign and an actual value for each.
						 You can use string type expressions here, but only give a string value to string type parameters of the called macro.
						 Array parameters have to be given full array values.
						 If a parameter name in the parameter list cannot be found in the called macro, you will get an error message.
						 Parameters of the called macro that are not listed in the macro call will be given their original default values
						 as defined in the library part called as a macro.

 				

 				
						ALL: all parameters of the caller are passed to the macro

 If this keyword is present, there is no need to specify the parameters one by one.
						 For a parameter of the macro which cannot be found in the caller, the default value will be used.
						 If parameter values are specified one by one, they will override the values coming from the caller or parameters of the called macro left to be default.

 				
					

					
						RETURNED_PARAMETERS: a variable list can follow to collect the returned parameters of the marco

 At the caller’s side, returned values can be collected using the RETURNED_PARAMETERS keyword followed by a variable list.
 The returned values will be stored in these variables in the order they are returned in the called macro.
 The number and the type of the variables specified in the caller and those returned in the macro must match.
 If there are more variables specified in the caller, they will be set to 0 integers.
 Type compatibility is not checked: the type of the variables specified in the caller will be set to the type of the returned values.
 If one of the variables in the caller is a dynamic array, all subsequent values will be stored in it.

 See the syntax of returning parameters at the END / EXIT command.

 				

 CALL macro_name_string [,]PARAMETERS
 value1 or DEFAULT [, ... valuen or DEFAULT]

 This form of macro call can be used for compatibility with previous versions. Using this syntax the actual parameter values have to be specified one by one
 in the order they are present in the called library part, no value can be missed, except from the end of the list.
 Using the DEFAULT keyword in place of a parameter actual value means that the actual value will be the default value stored in the library part.
 For the missing values defaults will be used automatically (the number of actual values n can be smaller than the number of parameters).
 When interpreting this kind of macro call there is no need to find the parameters by name to assign them the actual value,
 so even though it is more uncomfortable to use than the previous ones, a better performance can be achieved.

 CALL macro_name_string [, parameter_list]

						This form of macro call can be used for compatibility with previous versions.
 Can be used with simple GDL text files as well as any library part, on the condition that its parameter list contains only single-letter numerical parameters (A ... Z).
 No string type expressions or arrays are allowed with this method.
						The parameter list is a list of simple numerical values: the value of parameter A will be the first value in the list,
						the value of parameter B will be the second value, and so on. If there are less then A ... Z values specified in the parameter list,
 for the missing values 0 will be used automatically.
						If the (library part) macro does not have a single-letter parameter corresponding to the value, interpretation will continue by skipping this value,
 but you will get a warning from the program.				

				Example:

CALL "leg" 2, , 5 ! A = 2, B = 0, C = 5 leg 2, , 5
CALL "door-1" PARAMETERS height = 2, a = 25.5,
 name = "Director"
CALL "door-1" PARAMETERS ! use parameter default values

Output in an Alert Box

PRINT

				
				PRINT expression [, expression, ...]

				
					
						Writes all of its arguments in a dialog box. Arguments can be strings or numeric expressions of any number in any sequence,
						separated by commas.
					

				
				Example:

PRINT "loop-variable:", i
PRINT j, k-3*l
PRINT "Beginning of interpretation"
PRINT a * SIN (alpha) + b * COS (alpha)
PRINT "Parameter values: ", "a = ", a, ", b = ", b
PRINT name + STR ("%m", i) + "." + ext

			
File Operations

				The following keywords allow you to open external files for reading/writing
				and to manipulate them by putting/getting values from/to GDL scripts. This process necessarily involves using special Add-On extensions.
				Text files can be handled by the the section called “GDL Text I/O Add-On”. Add-Ons for other file types can be developed by third parties.
			

				See also the section called “GDL Text I/O Add-On”.
			
OPEN

				
				OPEN (filter, filename, parameter_string)

				
					
						Opens a file as directed. Its return value is a positive integer that will identify the specific file.
						This value, the channel number, will be the file’s reference number in succeeding instances.
						To include the referenced file in the archive project,
						use the FILE_DEPENDENCE command with the file name.
					

					
						filter: string, the name of an existing extension.

					

					
						filename: string, the name of the file.

					

					
						parameter_string:
							string, it contains the specific separation characters of the operational extension and the mode of opening.
							Its contents are interpreted by the extension.
						

					

				
			INPUT

				
				INPUT (channel, recordID, fieldID, variable1 [, variable2, ...])

				
					
						The number of given parameters defines the number of values from the starting position read from the file identified by the channel value.
						The parameter list must contain at least one value. This function puts the read values into the parameters as ordered.
						These values can be of numeric or string type, independent of the parameter type defined for storage.
					

					The return value is the number of the successfully read values. When encountering an end of file character, -1 is returned.

					
						recordID, fieldID: the string or numeric type starting position of the reading, its contents are interpreted by the extension.

					

				
			VARTYPE

				
				VARTYPE (expression)

				
					Returns 1 if the type of the expression is numerical, 2 if it is a string.

					
						Useful when reading values in variables with the INPUT command, which can change the type of the variables according to the current values.
						The type of these variables is not checked during the compilation process.
					

				
			OUTPUT

				
				OUTPUT channel, recordID, fieldID, expression1 [, expression2, ...]

				
					
						Writes as many values into the file identified by the channel value from the given position as there are defined expressions.
						There has to be at least one expression. The type of values is the same as those of the expressions.
					

					
						recordID, fieldID: the string or numeric type starting position of the writing; its contents are interpreted by the extension.

					

				
			CLOSE

				
				CLOSE channel

				
					Closes the file identified by the channel value.

				
			
Using Deterministic Add-Ons

				The following keywords allow you to call GDL add-ons which provide a deterministic function,
				i.e. the result of a given operation depends on the specified parameters only. This process necessarily involves using special Add-On extensions.
				For example polygon operations can be executed via the PolyOperations add-on. Add-Ons for other operations can be developed by third parties.
			

				See also the section called “Polygon Operations Extension”.
			
INITADDONSCOPE

				
				INITADDONSCOPE (extension, parameter_string1, parameter_string2)

				
					
						Opens a channel as directed. Its return value is a positive integer that will identify the specific connection.
						This value, the channel number, will be the connection’s reference number in succeeding instances.
					

					
						extension: string, the name of an existing extension.

					

					
						parameter_string1: string, its contents are interpreted by the extension.

					

					
						parameter_string2: string, its contents are interpreted by the extension.

					

				
			PREPAREFUNCTION

				
				PREPAREFUNCTION channel, function_name, expression1 [, expression2, ...]

				
					Sets some values in the add-on as a preparation step for calling a later function.

					
						function_name: the string or numeric identifier of the function to be called; its contents are interpreted by the extension.

					

					
						expression: parameters to be passed for the preparation step.

					

				
			CALLFUNCTION

				
				CALLFUNCTION (channel, function_name, parameter, variable1 [, variable2, ...])

				
					
						The function named function_name in the add-on specified by channel is called.
						The parameter list must contain at least one value. This function puts the returned values into the parameters as ordered.
						The return value is the number of the successfully set values.
					

					
						channel: channel value, used to identify the connection.

					

					
						function_name: the string or numeric identifier of the function to be called; its contents are interpreted by the extension.

					

					
						parameter: input parameter; its contents are interpreted by the extension.

					

					
						variablei: output parameter.

					

				
			CLOSEADDONSCOPE

				
				CLOSEADDONSCOPE channel

				
					Closes the connection identified by the channel value.

				
			
Chapter 12. Miscellaneous

			GDL can also handle a number of operations on external files through special Add-On applications. The commands used to achieve this are described in this chapter and illustrated with an example.
		
Global Variables

				The global variables make it possible to store special values of the model.
				This allows you to access geometric information about the environment of the GDL macro.
				For example, you can access the wall parameters when defining a window which has to fit into the wall.
				Global variables are not stacked during macro calls.
			

				For doors, windows, labels and property library parts there is one more possibility to communicate with ArchiCAD through fix named,
				optional parameters. These parameters, if present on the library part’s parameter list, are set by ArchiCAD.
				See the list of fix named parameters and more details in the Basic Library documentation
					http://www.graphisoft.com/support/developer/documentation/LibraryDevDoc/16/.
			
General environment information

						GLOB_SCRIPT_TYPE	type of current script

						
						
							1-properties script, 2-2D script, 3-3D script, 4-user interface script,
							5-parameters script, 6-master script, 7-forward migration script, 8-backward migration script
						

					

				

						GLOB_CONTEXT	context of appearance

						
						
							1-library part editor, 2-floor plan, 3-3D view, 4-section/elevation,
							5-settings dialog, 6-list, 7 - detail drawing, 8 - layout,
							22 - editing feedback mode from the floor plan, 23 - editing feedback mode from a 3Dview,
							24 - editing feedback mode from a section/elevation, 28 - editing feedback mode from a layout,
							43 - generating as an operator from a 3D view, 44 - generating as an operator from a section/elevation, 46 - generating as an operator from a list
						

					

				

						GLOB_SCALE	drawing scale

						
						
							according to the current window
						

					

				

						GLOB_DRAWING_BGD_PEN	pen of the drawing background color

						
						
							the best matching (printable) pen from the current palette to the background color of the current window
						

					

				

						GLOB_NORTH_DIR	project North direction

						
						
							relative to the default project coordinate system according to the settings made in the Project Location dialog
						

					

				

						GLOB_PROJECT_LONGITUDE	project longitude

						GLOB_PROJECT_LATITUDE	project latitude

						GLOB_PROJECT_ALTITUDE	project altitude

						
						
							the geographical coordinates of the project origin according to the settings specified in the Project Location dialog
						

					

				

						GLOB_PROJECT_DATE	project date

						
						
							array of the following six values: 1 - year, 2 - month, 3 - day, 4 - hour, 5 - minute, 6 - second.
							This variable contains the project's current date and is set only in relevant views (in other
							cases all values are set to 0).
						

					

				

						GLOB_WORLD_ORIGO_OFFSET_X	

						GLOB_WORLD_ORIGO_OFFSET_Y	

						
						
							Position of the project origin relative to the world origin. See Illustrating the usage of the GLOB_WORLD_ORIGO_... globals.
						

					

				

						GLOB_MODPAR_NAME	name of the last modified parameter

						
						
							in the settings dialog or library part editor, including parameters modified through editable hotspots.
						

					

				

						GLOB_UI_BUTTON_ID	id of the button pushed on the UI page

						
						
							or 0, if the last action was not the push of a button with id.
						

					

				

						GLOB_CUTPLANES_INFO	

						
						
							array of 4 length values: 1 - cutplane height, 2 - cutplane top level, 3 - cutplane bottom level, 4 - absolute display limit,
							in the library part’s local coordinate system. See details in ArchiCAD Set Floor Plan Cutplane dialog.
						

					

				

						GLOB_STRUCTURE_DISPLAY	structure display detail

						
						
							informs about the partial structure display option settings (integer):
							0 - entire structure, 1 - core only, 2 - without finishes
						

					

				

Story information

						GLOB_HSTORY_ELEV	elevation of the home story

						
						
							home story is the one the object is placed on
						

					

				

						GLOB_HSTORY_HEIGHT	height of the home story

						
						
							home story is the one the object is placed on
						

					

				

						GLOB_CSTORY_ELEV	elevation of the current story

						
						
							current story is the one currently shown in the Floor Plan window
						

					

				

						GLOB_CSTORY_HEIGHT	height of the current story

						
						
							current story is the one currently shown in the Floor Plan window
						

					

				

						GLOB_CH_STORY_DIST	relative position of the current story to the home story

						
						
							current story is the one currently shown in the Floor Plan window
						

					

				

Fly-through information

						GLOB_FRAME_NR	current frame number in animation

						
						
							valid only for animation, -1 for still images
						

					

				

						GLOB_FIRST_FRAME	first frame index in fly-through

						
						
							valid only for animation, 0 for still images
						

					

				

						GLOB_LAST_FRAME	last frame index in fly-through

						
						
							valid only for animation, 0 for still images
						

					

				

						GLOB_EYEPOS_X	current camera position (x)

						
						
							valid only in perspective projection for both animation and still images
						

					

				

						GLOB_EYEPOS_Y	current camera position (y)

						
						
							valid only in perspective projection for both animation and still images
						

					

				

						GLOB_EYEPOS_Z	current camera position (z)

						
						
							valid only in perspective projection for both animation and still images
						

					

				

						GLOB_TARGPOS_X	current target position (x)

						
						
							valid only in perspective projection for both animation and still images
						

					

				

						GLOB_TARGPOS_Y	current target position (y)

						
						
							valid only in perspective projection for both animation and still images
						

					

				

						GLOB_TARGPOS_Z	current target position (z)

						
						
							valid only in perspective projection for both animation and still images
						

					

				

						GLOB_SUN_AZIMUTH	sun azimuth

						
						
							according to the settings in the Sun... dialog box
						

					

				

						GLOB_SUN_ALTITUDE	sun altitude

						
						
							according to the settings in the Sun... dialog box
						

					

				

General element parameters

						GLOB_LAYER	layer of the element

						
						
							name of the layer the element is assigned to
						

					

				

						GLOB_ID	user ID of the element

						
						
							ID as set in the settings dialog box
						

					

				

						GLOB_INTGUID	internal GUID of the element

						
						
							the internal GUID generated by the program (cannot be controlled by the user)
						

					

				

						GLOB_ELEVATION	base elevation of the element

						
						
							relative to the home story (excluding door, window: sill height, according to current settings)
						

					

				

						GLOB_ELEM_TYPE	element type, for labels and property objects contains the type of the parent element

						
						
							0 - none (individual label), 1-object, 2-lamp, 3-window, 4-door, 5-wall, 6-column, 7-slab, 8-roof, 9-fill, 10-mesh, 11-zone,
							12 - beam, 13 - curtain wall, 14 - curtain wall frame, 15 - curtain wall panel, 16 - curtain wall junction,
							17 - curtain wall accessory, 18 - shell, 19 - skylight, 20 - morph
						

					

				

Object, Lamp, Door, Window, Wall End, Skylight parameters

						SYMB_LINETYPE	line type of the library part

						
						
							applied as the default line type of the 2D symbol
						

					

				

						SYMB_FILL	fill type of the library part

						
						
							applied on cut surfaces of library parts in section/elevation windows
						

					

				

						SYMB_FILL_PEN	pen of the fill of the library part

						
						
							applied on cut surfaces of library parts in section/elevation windows
						

					

				

						SYMB_FBGD_PEN	pen of the background of the fill of the library part

						
						
							applied on cut surfaces of library parts in section/elevation windows
						

					

				

						SYMB_SECT_PEN	pen of the library part in section

						
						
							applied on contours of cut surfaces of library parts in section/elevation windows
						

					

				

						SYMB_VIEW_PEN	default pen of the library part

						
						
							applied on all edges in 3D window and on edges on view in section/elevation windows
						

					

				

						SYMB_MAT	default material of the library part

				

						SYMB_POS_X	position of the library part (x)

						
						
							relative to the project origin (excluding door, window and wall end: relative to the startpoint of the including wall)
						

					

				

						SYMB_POS_Y	position of the library part (y)

						
						
							relative to the project origin (excluding door, window and wall end: relative to the startpoint of the including wall)
							Note: see the section called “Doors and Windows” for orientation of Y and Z axes
						

					

				

						SYMB_POS_Z	position of the library part (z)

						
						
							relative to the project origin (excluding door, window and wall end: relative to the startpoint of the including wall)
							Note: see the section called “Doors and Windows” for orientation of Y and Z axes
						

					

				

						SYMB_ROTANGLE	rotation angle of the library part

						
						
							numeric rotation from within the settings dialog is performed around the current anchor point
						

					

				

						SYMB_MIRRORED	library part mirrored

						
						
							0-no, 1-yes (mirroring is performed around the current anchor point.)
							Always 0 for wall ends,
							except when the origin of the local coordinate system is in a non-rectangular vertex of a trapezoidal wall’s polygon.
						

					

				

Object, Lamp, Door, Window, Wall End, Skylight, Curtain Wall Accessory parameters - available for listing and labels only

						SYMB_A_SIZE	nominal length/width of library part

						
						
							length of object/lamp, width of window/door (fixed parameter), width of accessory
						

					

				

						SYMB_B_SIZE	nominal width/height of library parts

						
						
							width of object/lamp, height of window/door (fixed parameter), height of accessory
						

					

				

Object, Lamp, Curtain Wall Accessory parameters - available for listing and labels only

						SYMB_Z_SIZE	nominal height/length of the library part

						
						
							length of accessory or if a user parameter is named in zzyzx format then it will be used for nominal height, otherwise 0
						

					

				

Window, Door and Wall End parameters

						WIDO_REVEAL_ON	built-in window/door reveal is on

						
						
							0-reveal is off, 1-reveal is on
						

					

				

						WIDO_SILL	sill depth of the window/door - sometimes referred to as reveal depth

						
						
							for curved walls: in radial direction at nominal sized opening corner
						

					

				

						WIDO_SILL_HEIGHT	window/door nominal sill height

				

						WIDO_RSIDE_SILL_HEIGHT	window/door sill height on the reveal side

				

						WIDO_OPRSIDE_SILL_HEIGHT	window/door sill height on the side opposite to the reveal side

				

						WIDO_RIGHT_JAMB	built-in window/door jamb on the right side

				

						WIDO_LEFT_JAMB	built-in window/door jamb on the left side

				

						WIDO_THRES_DEPTH	built-in window/door sill/threshold depth

				

						WIDO_HEAD_DEPTH	built-in window/door head depth

				

						WIDO_HEAD_HEIGHT	window/door nominal head height

				

						WIDO_RSIDE_HEAD_HEIGHT	window/door head height on the reveal side

				

						WIDO_OPRSIDE_HEAD_HEIGHT	window/door head height on the side opposite to the reveal side

				

						WIDO_REVEAL_SIDE	reveal side is opposite to the opening side

						
						
							1-yes, 0-no - when placing an element, the default value is 0 for windows, 1 for doors
						

					

				

						WIDO_FRAME_THICKNESS	frame thickness of window/door

						
						
							when flipping doors/windows, they will be mirrored then relocated automatically by this value
						

					

				

						WIDO_POSITION	offset of the door/window

						
						
							angle or distance between the axis of the opening or wall end and the normal vector at the wall’s starting point
						

					

				

						WIDO_ORIENTATION	window/door opening orientation

						
						
							left/right - it will work fine only if the door/window was created according to local standards
						

					

				

						WIDO_MARKER_TXT	window/door marker text

				

						WIDO_SUBFL_THICKNESS	subfloor thickness (for sill height correction)

				

						WIDO_PREFIX	window/door sill height prefix

				

						WIDO_CUSTOM_MARKER	window/door custom marker switch

						
						
							1-parameters can be used in the 2D script while the automatic dimension is not present
						

					

				

						WIDO_ORIG_DIST	distance of the local origin from the center of curvature of the wall

						
						
							distance of the local origin from the centerpoint of the curved wall, 0 for straight walls.
							Negative for wall ends at the ending point of the curved wall.
						

					

				

						WIDO_PWALL_INSET	parapet wall inset

				

Window, Door parameters - available for listing and labels only

						WIDO_RSIDE_WIDTH	window/door opening width on the reveal side

				

						WIDO_OPRSIDE_WIDTH	window/door opening width on the side opposite to the reveal side

				

						WIDO_RSIDE_HEIGHT	window/door opening height on the reveal side

				

						WIDO_OPRSIDE_HEIGHT	window/door opening height on the side opposite to the reveal side

				

						WIDO_RSIDE_SURF	window/door opening surface on the reveal side

				

						WIDO_OPRSIDE_SURF	window/door opening surface on the side opposite to the reveal side

				

						WIDO_N_RSIDE_WIDTH	nominal window/door opening width on the reveal side

				

						WIDO_N_OPRSIDE_WIDTH	nominal window/door opening width on the side opposite to the reveal side

				

						WIDO_N_RSIDE_HEIGHT	nominal window/door opening height on the reveal side

				

						WIDO_N_OPRSIDE_HEIGHT	nominal window/door opening height on the side opposite to the reveal side

				

						WIDO_N_RSIDE_SURF	nominal window/door opening surface on the reveal side

				

						WIDO_N_OPRSIDE_SURF	nominal window/door opening surface on the side opposite to the reveal side

				

						WIDO_VOLUME	window/door opening volume

				

						WIDO_GROSS_SURFACE	window/door opening nominal surface

				

						WIDO_GROSS_VOLUME	window/door opening nominal volume

				

Lamp parameters - available for listing and labels only

						LIGHT_ON	light is on

						
						
							0-light is off, 1-light is on
						

					

				

						LIGHT_RED	red component of the light color

				

						LIGHT_GREEN	green component of the light color

				

						LIGHT_BLUE	blue component of the light color

				

						LIGHT_INTENSITY	light intensity

				

Label parameters

						LABEL_POSITION	position of the label

						
						
							array[3][2] containing the coordinates of the 3 points defining the label position
						

					

				

						LABEL_CUSTOM_ARROW	use symbol arrow option on/off

						
						
							1 if the Use symbol arrow checkbox is checked, 0 otherwise
						

					

				

						LABEL_ARROW_LINETYPE	line type of the line of the arrow

				

						LABEL_ARROW_PEN	pen of the arrow

				

						LABEL_ARROWHEAD_PEN	pen of the arrowhead

				

						LABEL_FONT_NAME	font name

				

						LABEL_TEXT_SIZE	text size

				

						LABEL_TEXT_PEN	pen of the text

				

						LABEL_TEXT_BG_PEN	text box background pen

						
						
							0 if opaque is off, the background pen otherwise
						

					

				

						LABEL_FONT_STYLE	font style

						
						
							0-normal, 1-bold, 2-italic, 4- underline
						

					

				

						LABEL_FONT_STYLE2	font style in the settings dialog box

						
						
							0 - normal, otherwise j1 + 2*j2 + 4*j3 + 32*j6 + 64*j7 + 128*j8, j1 - bold, j2 - italic, j3 - underline, j6 - superscript,
							j7 - subscript, j8 - strikethrough
						

					

				

						LABEL_FRAME_ON	label frame on/off

						
						
							1 if the label frame is checked, 0 otherwise
						

					

				

						LABEL_ANCHOR_POS	label anchor position

						
						
							0 - middle, 1 - top, 2 - bottom
						

					

				

						LABEL_ROTANGLE	rotation angle

				

						LABEL_TEXT_ALIGN	text alignment

						
						
							1 - left aligned, 2 - center aligned, 3 - right aligned, 4 - full justified
						

					

				

						LABEL_TEXT_LEADING	line spacing factor

				

						LABEL_TEXT_WIDTH_FACT	width factor

				

						LABEL_TEXT_CHARSPACE_FACT	spacing factor

				

Wall parameters - available for Doors/Windows, listing and labels

						WALL_ID	user ID of the wall

				

						WALL_INTGUID	internal GUID of the wall

						
						
							the internal GUID generated by the program (cannot be controlled by the user)
						

					

				

						WALL_RESOL	3D resolution of a curved wall

						
						
							effective in 3D only
						

					

				

						WALL_THICKNESS	thickness of the wall

						
						
							in case of inclined walls: the wall thickness at the opening axis (local z axis)
						

					

				

						WALL_START_THICKNESS	Start thickness of the wall

				

						WALL_END_THICKNESS	End thickness of the wall

				

						WALL_INCL	inclination of the wall surfaces

						
						
							the angle between the two inclined wall surfaces - 0 for common straight walls
						

					

				

						WALL_HEIGHT	height of the wall

				

						WALL_MAT_A	material of the wall on the side opposite to the opening side

				

						WALL_MAT_B	material of the wall on the opening side

						
						
							this can vary from opening to opening placed in the same wall
						

					

				

						WALL_MAT_EDGE	material of the edges of the wall

				

						WALL_LINETYPE	line type of the wall

						
						
							applied on the contours only in the floor plan window
						

					

				

						WALL_FILL	fill type of the wall

						
						
							fill index, first skin of a composite structure
						

					

				

						WALL_FILL_PEN	pen of the wall fill

				

						WALL_COMPS_NAME	name of the composite or complex structure of the wall

						
						
							the name of the profile attribute for complex wall,
							the name of the composite attribute for composite walls, empty string otherwise.
						

					

				

						WALL_SKINS_NUMBER	number of composite or complex wall skins

						
						
							range of 1to 127, 0 if single fill applied
						

					

				

						WALL_SKINS_PARAMS	parameters of the composite or complex wall skins

						
						
							array with 16 columns: fill, thickness, (old contour pen), pen of fill, pen of fill background, core status, upper line pen, upper line type,
							lower line pen, lower line type, end face pen, fill orientation, skin type, end face line type, finish skin status,
							oriented fill status and with arbitrary number of rows.
						

						
							core status: 0 - not part, 1 - part, 3 - last skin of core, fill orientation: 0 - global, 1 - local, skin type: 0 - cut, 1 - below cutplane,
							2 - above cutplane (all skin types are 0 for simple walls).
							For D/W in complex walls on the floor plan this variable contains the data of all cut skins,
							for wall ends on the floor plan the data of all skins. finish skin status: 0 - not finish skin, 1 - finish skin,
							oriented fill status: 0 - global or local fill orientation as set in the "fill orientation" column,
							1 - fill orientation and size match with the wall skin direction and thickness
						

						
							For D/W and wall ends in the 3D window contains the data of the skins actually cut by the D/W or wall end.
						

					

				

						WALL_SECT_PEN	pen of the contours of the wall cut surfaces

						
						
							applied on contours of cut surfaces both in floor plan and section/elevation windows
						

					

				

						WALL_VIEW_PEN	pen of the contours of the wall on view

						
						
							applied on all edges in 3D window and on outline edges
							(edges on view below cutting plane) in floor plan and section/elevation window
						

					

				

						WALL_FBGD_PEN	pen of the background of the fill of the wall

				

						WALL_DIRECTION	direction of the wall

						
						
							straight walls: the direction of the reference line, curved walls: the direction of the chord of the arc
						

					

				

						WALL_POSITION	absolute coordinates of the wall

						
						
							array with 3 columns: x, y, z, which means the position of the wall’s starting point relative to the project origin
						

					

				

Wall parameters - available for listing and labels only

						WALL_LENGTH_A	length of the wall on the reference line side

				

						WALL_LENGTH_B	length of the wall on the side opposite to the reference line

				

						WALL_LENGTH_A_CON	conditional wall length on the reference line side

				

						WALL_LENGTH_B_CON	conditional wall length on the side opposite to the reference line

				

						WALL_CENTER_LENGTH	length of the wall at the center

				

						WALL_AREA	area of the wall

				

						WALL_PERIMETER	perimeter of the wall

				

						WALL_SURFACE_A	surface of the wall on the reference line side

				

						WALL_SURFACE_B	surface of the wall on the side opposite to the reference line

				

						WALL_SURFACE_A_CON	conditional wall surface on the reference line side

				

						WALL_SURFACE_B_CON	conditional wall surface on the side opposite to the reference line

				

						WALL_GROSS_SURFACE_A	gross surface of the wall on the reference line side

				

						WALL_GROSS_SURFACE_B	gross surface of the wall on the side opposite to the reference line

				

						WALL_EDGE_SURF	surface of the edge of the wall

				

						WALL_VOLUME	volume of the wall

				

						WALL_VOLUME_CON	conditional volume of the wall

				

						WALL_GROSS_VOLUME	gross volume of the wall

				

						WALL_VOLUME_A	wall skin volume on the reference line side

				

						WALL_VOLUME_A_CON	conditional wall skin volume on the reference line side

				

						WALL_VOLUME_B	wall skin volume on the side opposite to the reference line

				

						WALL_VOLUME_B_CON	conditional wall skin volume on the side opposite to the reference line

				

						WALL_DOORS_NR	number of doors in the wall

				

						WALL_WINDS_NR	number of windows in the wall

				

						WALL_HOLES_NR	number of empty openings

				

						WALL_DOORS_SURF	surface of doors in the wall

				

						WALL_WINDS_SURF	surface of windows in the wall

				

						WALL_HOLES_SURF	surface of empty openings in the wall

				

						WALL_HOLES_SURF_A	analytic surface of openings on the reference line side

				

						WALL_HOLES_SURF_B	analytic surface of openings on the opposite side

				

						WALL_HOLES_VOLUME	analytic volume of openings in the wall

				

						WALL_WINDS_WID	combined width of the windows in the wall

				

						WALL_DOORS_WID	combined width of the doors in the wall

				

						WALL_COLUMNS_NR	number of columns in the wall

				

						WALL_CROSSSECTION_TYPE	cross-section type of the wall

						
						
							0 - complex profiled, 1 - rectangular, 2 - slanted, 3 - double slanted
						

					

				

						WALL_MIN_HEIGHT	minimum height of the wall

				

						WALL_MAX_HEIGHT	maximum height of the wall

				

						WALL_SKIN_MIN_HEIGHT_A	minimum height of the wall skin on the reference line side

				

						WALL_SKIN_MAX_HEIGHT_A	maximum height of the wall skin on the reference line side

				

						WALL_SKIN_MIN_HEIGHT_B	minimum height of the wall skin on the reference line side

				

						WALL_SKIN_MAX_HEIGHT_B	maximum height of the wall skin on the side opposite to the reference line

				

						WALL_SKIN_THICKNESS_A	wall skin thickness on the reference line side

				

						WALL_SKIN_THICKNESS_B	wall skin thickness on the side opposite to the reference line

				

						WALL_INSU_THICKNESS	wall insulation skin thickness

				

						WALL_AIR_THICKNESS	wall air skin thickness

				

Column parameters - available for listing and labels only

						COLU_CORE	core/veneer properties

						
						
							serves compatibility: it is only effective in the properties script of .CPS (Column.Properties) files
						

					

				

						COLU_HEIGHT	height of the column

				

						COLU_MIN_HEIGHT	Minimum height of the column

				

						COLU_MAX_HEIGHT	Maximum height of the column

				

						COLU_VENEER_WIDTH	thickness of the column veneer

				

						COLU_CORE_X	Width of the core

				

						COLU_CORE_Y	Depth of the core

				

						COLU_DIM1	1st dimension of the column

				

						COLU_DIM2	2nd dimension of the column

				

						COLU_MAT	material of the column

						
						
							Wall wrapping will replace column material with the materials of the connecting walls
						

					

				

						COLU_LINETYPE	line type of the column

						
						
							applied on the contours only in the floor plan window
						

					

				

						COLU_CORE_FILL	fill of the column core

				

						COLU_VENEER_FILL	fill of the column veneer

				

						COLU_SECT_PEN	pen of the contours of the column cut surfaces

						
						
							applied on contours of cut surfaces in both floor plan and section/elevation windows
						

					

				

						COLU_VIEW_PEN	pen of the column on view

						
						
							applied on all edges in 3D window and on outline edges (edges on view below cutting plane) in floor plan and section/elevation windows
						

					

				

						COLU_CORE_FILL_PEN	pen of the fill of the column core

				

						COLU_CORE_FBGD_PEN	pen of the background of the fill of the column core

				

						COLU_VENEER_FILL_PEN	pen of the fill of the column veneer

				

						COLU_VENEER_FBGD_PEN	pen of the background of the fill of the column veneer

				

						COLU_PERIMETER	Perimeter of the column

				

						COLU_AREA	Area of the column

				

						COLU_VOLUME	Volume of the column

				

						COLU_GROSS_VOLUME	Gross volume of the column

				

						COLU_CORE_SURF	surface of the column core

				

						COLU_CORE_GROSS_SURF	Gross surface of the column

				

						COLU_CORE_VOL	volume of the column core

				

						COLU_CORE_GROSS_VOL	Gross volume of the core

				

						COLU_VENEER_SURF	surface of the column veneer

				

						COLU_VENEER_GROSS_SURF	Gross surface of the veneer

				

						COLU_VENEER_VOL	volume of the column veneer

				

						COLU_VENEER_GROSS_VOL	Gross volume of the veneer

				

						COLU_CORE_TOP_SURF	Surface of the core top

				

						COLU_CORE_BOT_SURF	Surface of the core bottom

				

						COLU_VENEER_TOP_SURF	Surface of the veneer top

				

						COLU_VENEER_BOT_SURF	Surface of the veneer bottom

				

						COLU_CORE_GROSS_TOPBOT_SURF	Gross surface of the core top and bottom

				

						COLU_VENEER_GROSS_TOPBOT_SURF	Gross surface of the veneer top and bottom

				

						COLU_CROSSSECTION_TYPE	cross-section type of the column

						
						
							0 - complex profiled, 1 - rectangular, 4 - round
						

					

				

						COLU_PROFILE_NAME	name of the profile of the column, if complex

				

Beam parameters - available for listing and labels only

						BEAM_THICKNESS	thickness of the beam

				

						BEAM_HEIGHT	height of the beam

				

						BEAM_REFLINE_OFFSET	offset of the reference line relative to the axes of the beam

				

						BEAM_PRIORITY	3D intersection priority index number

				

						BEAM_MAT_RIGHT	material of the beam on the right side of the reference line

				

						BEAM_MAT_LEFT	material of the beam on the left side of the reference line

				

						BEAM_MAT_TOP	material of the beam on the top

				

						BEAM_MAT_BOTTOM	material of the beam at the bottom

				

						BEAM_MAT_END	material of the beam at both ends

				

						BEAM_OUTLINE_LINETYPE	line type of the beam outline

				

						BEAM_AXES_LINETYPE	line type of the beam axes

				

						BEAM_FILL	fill type of the beam

				

						BEAM_FILL_PEN	pen of the beam fill

				

						BEAM_SECT_PEN	pen of the contours of the beam cut surfaces

				

						BEAM_FBGD_PEN	pen of the background of the fill of the beam

				

						BEAM_DIRECTION	the direction of the beam reference line

				

						BEAM_POSITION	absolute coordinates of the beam axis starting point

				

						BEAM_LENGTH_RIGHT	length of the beam on the right side of the reference line

				

						BEAM_LENGTH_LEFT	length of the beam on the left side of the reference line

				

						BEAM_RIGHT_SURF	surface of the beam on the right side of the reference line

				

						BEAM_LEFT_SURF	surface of the beam on the left side of the reference line

				

						BEAM_TOP_SURF	surface of the top of the beam

				

						BEAM_BOTTOM_SURF	surface of the bottom of the beam

				

						BEAM_END_SURF	surface of both ends of the beam

				

						BEAM_VOLUME	volume of the beam

				

						BEAM_VOLUME_CON	conditional volume of the beam

				

						BEAM_HOLES_NR	number of holes in the beam

				

						BEAM_HOLES_SURF	total surface of holes in the beam

				

						BEAM_HOLE_EDGE_SURF	total surface of hole edges in the beam

				

						BEAM_HOLES_VOLUME	total volume of holes in the beam

				

						BEAM_CROSSSECTION_TYPE	cross-section type of the beam

						
						
							0 - complex profiled, 1 - rectangular
						

					

				

						BEAM_PROFILE_NAME	name of the profile of the beam, if complex

				

Slab parameters - available for listing and labels only

						SLAB_THICKNESS	thickness of the slab

				

						SLAB_MAT_TOP	material of the top surface of the slab

				

						SLAB_MAT_EDGE	material of the edges of the slab

				

						SLAB_MAT_BOTT	material of the bottom surface of the slab

				

						SLAB_LINETYPE	line type of the slab

				

						SLAB_FILL	fill of the slab

						
						
							fill index - its value is negative in case of a composite structure
						

					

				

						SLAB_FILL_PEN	pen of the fill of the slab

				

						SLAB_FBGD_PEN	pen of the background of the fill of the slab

				

						SLAB_COMPS_NAME	name of the composite structure of the slab

				

						SLAB_SKINS_NUMBER	number of composite slab skins

						
						
							range of 1 to 8, 0 if single fill applied
						

					

				

						SLAB_SKINS_PARAMS	parameters of the composite slab skins

						
						
							array with 16 columns: fill, thickness, (old contour pen), pen of fill, pen of fill background, core status, upper line pen, upper line type,
							lower line pen, lower line type, end face pen, fill orientation, skin type, end face line type, finish skin status,
							oriented fill status and with arbitrary number of rows.
						

						
							core status: 0 - not part, 1 - part, 3 - last skin of core, fill orientation: 0 - global, 1 - local;
							skin type: in the current ArchiCAD always 0 - cut, it can be used as in walls later; finish skin status: 0 not finish skin, 1: finish skin
						

					

				

						SLAB_SECT_PEN	pen of the contours of the slab in section

						
						
							applied on contours of cut surfaces in both floor plan and section/elevation windows
						

					

				

						SLAB_VIEW_PEN	pen of the slab

						
						
							applied on all edges in 3D window and on visible edges in section/elevation windows
						

					

				

						SLAB_TOP_SURF	top surface of the slab

						
						
							not reduced by the surface of holes
						

					

				

						SLAB_GROSS_TOP_SURF	gross surface of the slab top without hole

						
						
							reduced by the surface of holes
						

					

				

						SLAB_TOP_SURF_CON	conditional top surface of the slab

						
						
							reduced by the surface of holes, which are bigger than the given value
						

					

				

						SLAB_BOT_SURF	bottom surface of the slab without hole

						
						
							not reduced by the surface of holes
						

					

				

						SLAB_GROSS_BOT_SURF	gross surface of the slab bottom

						
						
							reduced by the surface of holes
						

					

				

						SLAB_BOT_SURF_CON	conditional bottom surface of the slab

						
						
							reduced by the surface of holes, which are bigger than the given value
						

					

				

						SLAB_EDGE_SURF	surface of the edges of the slab

						
						
							not reduced by the surface of holes
						

					

				

						SLAB_GROSS_EDGE_SURF	gross surface of the slab edges without hole

						
						
							reduced by the surface of holes
						

					

				

						SLAB_PERIMETER	perimeter of the slab

				

						SLAB_VOLUME	volume of the slab

						
						
							not reduced by the volume of holes
						

					

				

						SLAB_GROSS_VOLUME	gross volume of the slab without hole

						
						
							reduced by the volume of holes
						

					

				

						SLAB_VOLUME_CON	conditional volume of the slab

						
						
							reduced by the volume of holes, which are bigger than the given value
						

					

				

						SLAB_SEGMENTS_NR	number of segments of the slab

				

						SLAB_HOLES_NR	number of holes in the slab

				

						SLAB_HOLES_AREA	area of holes in the slab

				

						SLAB_HOLES_PRM	perimeter of holes in the slab

				

						SLAB_GROSS_TOP_SURF_WITH_HOLES	gross surface of the slab top

				

						SLAB_GROSS_BOT_SURF_WITH_HOLES	gross surface of the slab bottom

				

						SLAB_GROSS_EDGE_SURF_WITH_HOLES	gross surface of the slab edges

				

						SLAB_GROSS_VOLUME_WITH_HOLES	gross volume of the slab

				

Roof parameters - available for skylights, listing and labels

						ROOF_THICKNESS	thickness of the roof

				

						ROOF_ANGLE	slope of the roof

				

						ROOF_MAT_TOP	material of the top surface of the roof

				

						ROOF_MAT_EDGE	material of the edges of the roof

				

						ROOF_MAT_BOTT	material of the bottom surface of the roof

				

						ROOF_LINETYPE	line type of the roof

						
						
							applied on the contours only in the floor plan window
						

					

				

						ROOF_FILL	fill of the roof

						
						
							fill index - its value is negative in case of a composite structure
						

					

				

						ROOF_FILL_PEN	pen of the fill of the roof

				

						ROOF_FBGD_PEN	pen of the background of the fill of the roof

				

						ROOF_COMPS_NAME	name of the composite structure of the roof

				

						ROOF_SKINS_NUMBER	number of composite roof skins

						
						
							range of 1 to 8, 0 if single fill applied
						

					

				

						ROOF_SKINS_PARAMS	parameters of the composite roof skin

						
						
							array with 16 columns: fill, thickness, (old contour pen), pen of fill, pen of fill background, core status, upper line pen, upper line type,
							lower line pen, lower line type, end face pen, fill orientation, skin type, end face line type, finish skin status,
							oriented fill status and with arbitrary number of rows.
						

						
							core status: 0 - not part, 1 - part, 3 - last skin of core, fill orientation: 0 - global, 1 - local;
							skin type: in the current ArchiCAD always 0 - cut, it can be used as in walls later; finish skin status: 0 not finish skin, 1: finish skin
						

					

				

						ROOF_SECT_PEN	pen of the contours of the roof cut surfaces

						
						
							applied on contours of cut surfaces both in floor plan and section/elevation windows
						

					

				

						ROOF_VIEW_PEN	pen of the roof on view

						
						
							applied on all edges in 3D window and on outline edges (edges on view below cutting plane) in floor plan and section/elevation windows
						

					

				

Roof parameters - available for listing and labels only

						ROOF_BOTTOM_SURF	bottom surface of the roof

						
						
							not reduced by the surface of the holes, which are bigger than the given value
						

					

				

						ROOF_GROSS_BOTTOM_SURF	gross surface of the roof bottom

						
						
							reduced by the surface of the holes
						

					

				

						ROOF_BOTTOM_SURF_CON	conditional bottom surface of the roof

						
						
							reduced by the surface of the holes, which are bigger than the given value
						

					

				

						ROOF_TOP_SURF	top surface of the roof

						
						
							not reduced by the surface of the holes, which are bigger than the given value
						

					

				

						ROOF_GROSS_TOP_SURF	gross surface of the roof top

						
						
							reduced by the surface of the holes
						

					

				

						ROOF_TOP_SURF_CON	conditional surface of the roof

						
						
							reduced by the surface of the holes, which are bigger than the given value
						

					

				

						ROOF_EDGE_SURF	surface of the edge of the roof

						
						
							not reduced by the surface of the holes
						

					

				

						ROOF_GROSS_EDGE_SURF	gross surface of the roof edges

						
						
							reduced by the surface of the holes
						

					

				

						ROOF_CONTOUR_AREA	area covered by the roof

				

						ROOF_PERIMETER	perimeter of the roof

				

						ROOF_VOLUME	volume of the roof

						
						
							not reduced by the volume of holes
						

					

				

						ROOF_GROSS_VOLUME	gross volume of the roof

						
						
							reduced by the volume of holes
						

					

				

						ROOF_VOLUME_CON	conditional volume of the roof

						
						
							reduced by the volume of holes, which are bigger than the given value
						

					

				

						ROOF_SEGMENTS_NR	number of segments of the roof

				

						ROOF_HOLES_NR	number of holes in the roof

				

						ROOF_HOLES_AREA	area of holes in the roof

				

						ROOF_HOLES_PRM	perimeter of holes in the roof

				

						ROOF_INSU_THICKNESS	roof insulation skin thickness

				

						ROOF_RIDGE	roof ridges length

				

						ROOF_VALLEY	roof valleys length

				

						ROOF_GABLE	roof gables length

				

						ROOF_HIP	roof hips length

				

						ROOF_EAVES	roof eaves length

				

						ROOF_PEAK	roof peaks length

				

						ROOF_SIDE_WALL	roof side wall connection length

				

						ROOF_END_WALL	roof end wall connection length

				

						ROOF_TRANSITION_DOME	roof dome connection length

				

						ROOF_TRANSITION_HOLLOW	roof hollow connection length

				

Fill parameters - available for listing and labels only

						FILL_LINETYPE	line type of the fill

				

						FILL_FILL	fill type of the fill

				

						FILL_FILL_PEN	pen of the fill pattern of the fill

				

						FILL_PEN	pen of the fill

				

						FILL_FBGD_PEN	pen of the background of the fill

				

						FILL_SURF	area of the fill

				

						FILL_PERIMETER	perimeter of the fill

				

						FILL_SEGMENT_NR	number of segments of the fill

				

						FILL_HOLES_NR	number of holes in the fill

				

						FILL_HOLES_PRM	perimeter of holes in the fill

				

						FILL_HOLES_AREA	area of holes in the fill

				

						FILL_FILL_CATEGORY	fill category of the fill

						
						
							0 - Draft, 1 - Cut, 2 - Cover
						

					

				

Mesh parameters - available for listing and labels only

						MESH_TYPE	type of the mesh

						
						
							1- closed body, 2 - top & edge, 3 - top surface only
						

					

				

						MESH_BASE_OFFSET	offset of the bottom surface to the base level

				

						MESH_USEREDGE_PEN	pen of the user defined ridges of the mesh

				

						MESH_TRIEDGE_PEN	pen of the triangulated edges of the mesh

				

						MESH_SECT_PEN	pen of the contours of the mesh in section

						
						
							applied on contours of cut surfaces of walls both in floor plan and section/elevation windows
						

					

				

						MESH_VIEW_PEN	pen of the contours on view

						
						
							applied on all edges in 3D window and on edges on view in section/elevation windows
						

					

				

						MESH_MAT_TOP	material of the top surface of the mesh

				

						MESH_MAT_EDGE	material of the edges of the mesh

				

						MESH_MAT_BOTT	material of the bottom surface of the mesh

				

						MESH_LINETYPE	line type of the mesh

						
						
							applied on the contours only in the floor plan window
						

					

				

						MESH_FILL	fill type of the mesh

				

						MESH_FILL_PEN	pen of the fill of the mesh

				

						MESH_FBGD_PEN	pen of the background of the fill of the mesh

				

						MESH_BOTTOM_SURF	bottom surface of the mesh

				

						MESH_TOP_SURF	top surface of the mesh

				

						MESH_EDGE_SURF	surface of the edge of the mesh

				

						MESH_PERIMETER	perimeter of the mesh

				

						MESH_VOLUME	volume of the mesh

				

						MESH_SEGMENTS_NR	number of segments of the mesh

				

						MESH_HOLES_NR	number of holes in the mesh

				

						MESH_HOLES_AREA	area of holes in the mesh

				

						MESH_HOLES_PRM	perimeter of holes in the mesh

				

Curtain Wall parameters - available for listing and labels only

						CWALL_ID	user ID of the curtain wall

				

						CWALL_FRAMES_LENGTH	length of frames in the curtain wall

				

						CWALL_CONTOUR_FRAMES_LENGTH	length of frames on contour in the curtain wall

				

						CWALL_MAINAXIS_FRAMES_LENGTH	length of frames on primary gridlines in the curtain wall

				

						CWALL_SECAXIS_FRAMES_LENGTH	length of frames on secondary gridlines in the curtain wall

				

						CWALL_CUSTOM_FRAMES_LENGTH	length of other frames in the curtain wall

				

						CWALL_PANELS_SURF	surface of panels in the curtain wall

				

						CWALL_PANELS_SURF_N	surface of north panels in the curtain wall

				

						CWALL_PANELS_SURF_S	surface of south panels in the curtain wall

				

						CWALL_PANELS_SURF_E	surface of east panels in the curtain wall

				

						CWALL_PANELS_SURF_W	surface of west panels in the curtain wall

				

						CWALL_PANELS_SURF_NE	surface of northeast panels in the curtain wall

				

						CWALL_PANELS_SURF_NW	surface of northwest panels in the curtain wall

				

						CWALL_PANELS_SURF_SE	surface of southeast panels in the curtain wall

				

						CWALL_PANELS_SURF_SW	surface of southwest panels in the curtain wall

				

						CWALL_SURF	surface of the curtain wall

				

						CWALL_SURF_BOUNDARY	surface of the curtain wall bordered by boundary frames

				

						CWALL_LENGTH	length of the curtain wall

				

						CWALL_HEIGHT	height of the curtain wall

				

						CWALL_SLANT_ANGLE	slant angle of the curtain wall

				

						CWALL_THICKNESS	thickness of the curtain wall

				

						CWALL_PANELS_NR	number of panels in the curtain wall

				

						CWALL_PATTERN_ANGLE	pattern angle of the curtain wall

				

Curtain Wall Frame parameters - available for listing and labels only

						CWFRAME_TYPE	type of the frame

						
						
							'Invisible', 'Generic', 'Butt-glazed' or the name of the GDL object
						

					

				

						CWFRAME_CLASS	class of the frame

						
						
							0 - mullion, 1 - transom, 2 - boundary, 3 - custom
						

					

				

						CWFRAME_POSITION	location of the frame

						
						
							0 - primary gridline, 1 - secondary gridline, 2 - boundary, 3 - other
						

					

				

						CWFRAME_DIRECTION	slant angle of the frame

						
						
							degree between 0 and 90
						

					

				

						CWFRAME_WIDTH	width of the frame

				

						CWFRAME_DEPTH	depth of the frame

				

						CWFRAME_LENGTH	length of the frame

				

						CWFRAME_MAT	material of the frame

				

Curtain Wall Panel parameters - available for listing and labels only

						CWPANEL_TYPE	type of the panel

						
						
							"Generic" or the name of the GDL object
						

					

				

						CWPANEL_CLASS	class of the panel

						
						
							0 - main, 1 - distinct, 2 - custom
						

					

				

						CWPANEL_VERTICAL_DIRECTION	slant angle of exterior surface of the panel

						
						
							degree between -90 and 90
						

					

				

						CWPANEL_HORIZONTAL_DIRECTION	angle of exterior surface of the panel from Project North

						
						
							degree between -180 and 180
						

					

				

						CWPANEL_WIDTH	width of the panel

				

						CWPANEL_NOMINAL_WIDTH	nominal width of the panel

				

						CWPANEL_HEIGHT	height of the panel

				

						CWPANEL_NOMINAL_HEIGHT	nominal height of the panel

				

						CWPANEL_THICKNESS	thickness of the panel

				

						CWPANEL_SURF	surface of the panel

				

						CWPANEL_GROSS_SURF	gross surface of the panel

				

						CWPANEL_NOMINAL_SURF	nominal surface of the panel

				

						CWPANEL_PERIMETER	perimeter of the panel

				

						CWPANEL_MAT_OUTER	material for the exterior surface of the panel

				

						CWPANEL_MAT_INNER	material for the interior surface of the panel

				

						CWPANEL_MAT_CUT	material for the edge of the panel

				

						CWPANEL_FUNCTION	function of the panel

						
						
							0 - fixed, 1 - door, 2 - window
						

					

				

						CWPANEL_ORIENTATION	opening orientation of door/window panel

						
						
							left/right
						

					

				

Curtain Wall Junction parameters - available for listing and labels only

						CWJUNC_TYPE	type of the junction

						
						
							name of the GDL object
						

					

				

Curtain Wall Accessory parameters - available for listing and labels only

						CWACC_TYPE	type of the accessory

						
						
							name of the GDL object
						

					

				

Wall-Zone Border parameters

						Gdl_WALLZ_LENGTH	Wall-Zone border length

				

						Gdl_WALLZ_SURF	Wall-Zone border surface

				

						Gdl_WALLZ_DOORS_SURF	Surface of doors on Wall-Zone border

				

						Gdl_WALLZ_DOORS_WIDTH	Sum of door widths on Wall-Zone border

				

						Gdl_WALLZ_WINDS_SURF	Surface of windows on Wall-Zone border

				

						Gdl_WALLZ_WINDS_WIDTH	Sum of window widths on Wall-Zone border

				

Migration parameters - available for migration scripts only

						FROM_GUID	Main GUID of the library part which was placed originally

				

						TO_GUID	Main GUID of the library part to which the migration is performed

				

Skylight parameters - available for listing and labels only

						SKYL_MARKER_TXT	skylight marker text

				

						SKYL_OPENING_SURF	skylight opening surface

				

						SKYL_OPENING_VOLUME	volume of the opening cut by the skylight

				

						SKYL_OPENING_HEIGHT	skylight opening height

				

						SKYL_OPENING_WIDTH	skylight opening width

				

						SKYL_HEADER_HEIGHT	skylight header height

				

						SKYL_SILL_HEIGHT	skylight sill height

				

Common Parameters for Shells and Roofs - available for listing and labels only

						SHELLBASE_THICKNESS	thickness of the shell/roof/slab

						
						
							equal to ROOF_THICKNESS for roofs
						

					

				

						SHELLBASE_MAT_REFERENCE	material of the bottom surface of the shell/roof

						
						
							equal to ROOF_MAT_BOTT for roofs
						

					

				

						SHELLBASE_MAT_EDGE	material of the edges of the shell/roof

						
						
							equal to ROOF_MAT_EDGE for roofs
						

					

				

						SHELLBASE_MAT_OPPOSITE	material of the top surface of the shell/roof

						
						
							equal to ROOF_MAT_TOP for roofs
						

					

				

						SHELLBASE_LINETYPE	line type of the shell/roof

						
						
							applied on the contours only in the floor plan window, equal to ROOF_LINETYPE for roofs
						

					

				

						SHELLBASE_FILL	fill of the shell/roof

						
						
							fill index - its value is negative in case of a composite structure, equal to ROOF_FILL for roofs
						

					

				

						SHELLBASE_FILL_PEN	pen of the fill of the roof shell/roof

						
						
							equal to ROOF_FILL_PEN for roofs
						

					

				

						SHELLBASE_FBGD_PEN	pen of the background of the fill of the shell/roof

						
						
							equal to ROOF_FBGD_PEN for roofs
						

					

				

						SHELLBASE_COMPS_NAME	name of the composite structure of the shell/roof

						
						
							equal to ROOF_COMPS_NAME for roofs
						

					

				

						SHELLBASE_SKINS_NUMBER	number of composite roof skins shell/roof

						
						
							range of 1 to 8, 0 if single fill applied, equal to ROOF_SKINS_NR for roofs
						

					

				

						SHELLBASE_SKINS_PARAMS	parameters of the composite roof skin shell/roof

						
						
							array with 16 columns: fill, thickness, (old contour pen), pen of fill, pen of fill background, core status, upper line pen, upper line type,
							lower line pen, lower line type, end face pen, fill orientation, skin type, end face line type, finish skin status,
							oriented fill status and with arbitrary number of rows.
						

						
							core status: 0 - not part, 1 - part, 3 - last skin of core, fill orientation: 0 - global, 1 - local;
							skin type: in the current ArchiCAD always 0 - cut, it can be used as in walls later; finish skin status: 0 not finish skin, 1: finish skin
						

						
							equal to ROOF_SKINS_PARAMS for roofs
						

					

				

						SHELLBASE_SECT_PEN	pen of the contours of the roof cut surfaces shell/roof

						
						
							applied on contours of cut surfaces both in floor plan and section/elevation windows, equal to ROOF_SECT_PEN for roofs
						

					

				

						SHELLBASE_VIEW_PEN	pen of the roof on view shell/roof

						
						
							applied on all edges in 3D window and on outline edges (edges on view below cutting plane) in floor plan and section/elevation windows,
							equal to ROOF_VIEW_PEN for roofs
						

					

				

						SHELLBASE_REFERENCE_SURF	reference side surface of the shell/roof

						
						
							not reduced by the surface of holes, equal to ROOF_BOTTOM_SURF for roofs
						

					

				

						SHELLBASE_COND_REFERENCE_SURF	conditional reference side surface of the shell/roof

						
						
							equal to ROOF_BOTTOM_SURF_CON for roofs
						

					

				

						SHELLBASE_GROSS_REFERENCE_SURF	gross surface of the shell/roof reference side

						
						
							reduced by the surface of the holes, equal to ROOF_GROSS_BOTTOM_SURF for roofs
						

					

				

						SHELLBASE_OPPOSITE_SURF	surface of the opposite side to the reference side of the shell/roof

						
						
							not reduced by the surface of holes, equal to ROOF_TOP_SURF for roofs
						

					

				

						SHELLBASE_COND_OPPOSITE_SURF	conditional surface of the opposite side to the reference side of the shell/roof

						
						
							reduced by the surface of the holes, which are bigger than the given value; equal to ROOF_TOP_SURF_CON for roofs
						

					

				

						SHELLBASE_GROSS_OPPOSITE_SURF	gross surface of the opposite side to the reference side of the shell/roof

						
						
							reduced by the surface of the holes, equal to ROOF_GROSS_TOP_SURF for roofs
						

					

				

						SHELLBASE_EDGE_SURF	surface of the edge of the shell/roof

						
						
							not reduced by the surface of holes, equal to ROOF_EDGE_SURF for roofs
						

					

				

						SHELLBASE_GROSS_EDGE_SURF	gross surface of the shell/roof edges

						
						
							reduced by the surface of holes, equal to ROOF_GROSS_EDGE_SURF for roofs
						

					

				

						SHELLBASE_PERIMETER	perimeter of the shell/roof

						
						
							equal to ROOF_PERIMETER for roofs
						

					

				

						SHELLBASE_VOLUME	volume of the shell/roof

						
						
							not reduced by the volume of holes, equal to ROOF_VOLUME for roofs
						

					

				

						SHELLBASE_COND_VOLUME	conditional volume of the roof shell/roof

						
						
							reduced by the volume of holes, which are bigger than the given value; equal to ROOF_VOLUME_CON for roofs
						

					

				

						SHELLBASE_GROSS_VOLUME	gross volume of the roof shell/roof

						
						
							reduced by the volume of holes, equal to ROOF_GROSS_VOLUME for roofs
						

					

				

						SHELLBASE_HOLES_NR	number of holes in the shell/roof

						
						
							equal to ROOF_HOLES_NR for roofs
						

					

				

						SHELLBASE_HOLES_SURF	surface of holes in the shell/roof

						
						
							equal to ROOF_HOLES_AREA for roofs
						

					

				

						SHELLBASE_HOLES_PRM	perimeter of holes in the shell

						
						
							equal to ROOF_HOLES_PRM for roofs
						

					

				

						SHELLBASE_OPENINGS_NR	number of openings in the shell

				

						SHELLBASE_OPENINGS_SURF	surface of openings in the shell

				

						SHELLBASE_INSU_THICKNESS	shell/roof insulation skin thickness

						
						
							equal to ROOF_INSU_THICKNESS for roofs
						

					

				

						SHELLBASE_RIDGE	shell/roof ridges length

						
						
							equal to ROOF_RIDGE for roofs
						

					

				

						SHELLBASE_VALLEY	shell/roof valleys length

						
						
							equal to ROOF_VALLEY for roofs
						

					

				

						SHELLBASE_GABLE	shell/roof gables length

						
						
							equal to ROOF_GABLE for roofs
						

					

				

						SHELLBASE_HIP	shell/roof hips length

						
						
							equal to ROOF_HIP for roofs
						

					

				

						SHELLBASE_EAVES	shell/roof eaves length

						
						
							equal to ROOF_EAVES for roofs
						

					

				

						SHELLBASE_PEAK	shell/roof peaks length

						
						
							equal to ROOF_PEAK for roofs
						

					

				

						SHELLBASE_SIDE_WALL	shell/roof side wall connection length

						
						
							equal to ROOF_SIDE_WALL for roofs
						

					

				

						SHELLBASE_END_WALL	shell/roof end wall connection length

						
						
							equal to ROOF_END_WALL for roofs
						

					

				

						SHELLBASE_TRANSITION_DOME	shell/roof dome connection length

						
						
							equal to ROOF_TRANSITION_DOME for roofs
						

					

				

						SHELLBASE_TRANSITION_HOLLOW	shell/roof hollow connection length

						
						
							equal to ROOF_TRANSITION_HOLLOW for roofs
						

					

				

Parameters for Morphs - available for listing and labels only

						MORPH_LINETYPE	Line type of the morph on view

				

						MORPH_FILL	Fill of the morph cut surfaces

				

						MORPH_FILL_PEN	Pen of the morph cut surfaces

				

						MORPH_FBGD_PEN	Pen of the background of the fill of the morph cut surfaces

				

						MORPH_SECT_LINETYPE	Line type of the contours of the morph cut surfaces

				

						MORPH_SECT_PEN	Pen of the contours of the moprh cut surfaces

				

						MORPH_VIEW_PEN	Pen of the contours of the morph on view

				

						MORPH_SOLID	Morph body solid (on/off)

				

						MORPH_MAT_DEFAULT	Morph default material

				

						MORPH_CASTS_SHADOW	Cast shadow (on/off)

				

						MORPH_RECEIVES_SHADOW	Receive shadow (on/off)

				

						MORPH_SURFACE	Gross surface of the morph

				

						MORPH_VOLUME	Volume of the morph

				

						MORPH_FLOOR_PERIMETER	perimeter of the morph on the floor plan

				

Free users’ globals

						GLOB_USER_1	

				

						GLOB_USER_2	

				

						GLOB_USER_3	

				

						GLOB_USER_4	

				

						GLOB_USER_5	

				

						GLOB_USER_6	

				

						GLOB_USER_7	

				

						GLOB_USER_8	

				

						GLOB_USER_9	

				

						GLOB_USER_10	free variables 1 to 10 are initialized to number by default

				

						GLOB_USER_11	

				

						GLOB_USER_12	

				

						GLOB_USER_13	

				

						GLOB_USER_14	

				

						GLOB_USER_15	

				

						GLOB_USER_16	

				

						GLOB_USER_17	

				

						GLOB_USER_18	

				

						GLOB_USER_19	

				

						GLOB_USER_20	free variables 11 to 20 are initialized to string by default

				

Example usage of global variables

Example:
Illustrating the usage of the GLOB_WORLD_ORIGO_... globals
ADD2 -GLOB_WORLD_ORIGO_OFFSET_X - SYMB_POS_X, -GLOB_WORLD_ORIGO_OFFSET_X -SYMB_POS_Y
LINE2 -0.1, 0.0, 0.1, 0.0
LINE2 0.0, -0.1, 0.0, 0.1
HOTSPOT2 0.0, 0.0, 1
TEXT2 0, 0, "(0.00 ; 0.00)"
TEXT2 0, 0.5, "World Origin"
DEL TOP
if ABS(GLOB_WORLD_ORIGO_OFFSET_X) > 0.01 OR ABS(GLOB_WORLD_ORIGO_OFFSET_Y) > 0.01 THEN
 ADD2 - SYMB_POS_X, - SYMB_POS_Y
 LINE2 -0.1, 0.0, 0.1, 0.0
 LINE2 0.0, -0.1, 0.0, 0.1
 HOTSPOT2 0.0, 0.0, 2
 TEXT2 0, 0, "(" +
 STR (GLOB_WORLD_ORIGO_OFFSET_X, 9, 4) + "; " +
 STR (GLOB_WORLD_ORIGO_OFFSET_Y, 9, 4) + ")"
 TEXT2 0, 0.5, "Virtual Origin"
 DEL TOP
ENDIF
if ABS(GLOB_WORLD_ORIGO_OFFSET_X + SYMB_POS_X) > 0.01 OR ABS(GLOB_WORLD_ORIGO_OFFSET_Y+\
 SYMB_POS_Y) > 0.01 THEN
 LINE2 -0.1, 0.0, 0.1, 0.0
 LINE2 0.0, -0.1, 0.0, 0.1
 HOTSPOT2 0.0, 0.0, 3
 TEXT2 0, 0, "(" +
 STR (GLOB_WORLD_ORIGO_OFFSET_X + SYMB_POS_X, 9, 4) + "; " +
 STR (GLOB_WORLD_ORIGO_OFFSET_Y + SYMB_POS_Y, 9, 4) + ")"
 TEXT2 0, 0.5, "Object Placement"
ENDIF

Old Global Variables

					Old global variable names can be used; however, the use of the new names is recommended.
					Each old global corresponds to a new variable with a long name.
				
A_ GLOB_SCALE
B_ GLOB_HSTORY_ELEV
C_ WALL_THICKNESS
D_ WALL_HEIGHT
E_ WALL_SECT_PEN
F_ WALL_FILL_PEN
G_ WALL_MAT_A
H_ WALL_MAT_B
I_ WALL_MAT_EDGE
J_ GLOB_ELEVATION
K_ WIDO_SILL
L_ SYMB_VIEW_PEN
M_ SYMB_MAT
N_ GLOB_FRAME_NR
O_ GLOB_FIRST_FRAME
P_ GLOB_LAST_FRAME
Q_ GLOB_HSTORY_HEIGHT
R_ WIDO_ORIG_DIST
S_ GLOB_USER_1
T_ GLOB_USER_2
U_ GLOB_USER_3
V_ GLOB_USER_4
W_ GLOB_USER_5
X_ GLOB_USER_6
Y_ GLOB_USER_7
Z_ GLOB_USER_8
A~ WALL_FILL
B~ WIDO_RIGHT_JAMB
C~ WIDO_THRES_DEPTH
D~ WIDO_HEAD_DEPTH
E~ WIDO_REVEAL_SIDE
F~ WIDO_FRAME_THICKNESS
G~ GLOB_USER_9
H~ WIDO_POSITION
I~ GLOB_USER_10
J~ WALL_RESOL
K~ GLOB_EYEPOS_X
L~ GLOB_EYEPOS_Y
M~ GLOB_EYEPOS_Z
N~ GLOB_TARGPOS_X
O~ GLOB_TARGPOS_Y
P~ GLOB_TARGPOS_Z
Q~ GLOB_CSTORY_ELEV
R~ GLOB_CSTORY_HEIGHT
S~ GLOB_CH_STORY_DIST
T~ GLOB_SCRIPT_TYPE
U~ GLOB_NORTH_DIR
V~ SYMB_MIRRORED
W~ SYMB_ROTANGLE
X~ SYMB_POS_X
Y~ SYMB_POS_Y
Z~ SYMB_POS_Z

REQUEST Options

REQUEST (question_name, name | index, variable1 [, variable2, ...])

				The first parameter represents the question string while the second represents the object of the question (if it exists)
				and can be of either string or numeric type. The other parameters are variable names in which the return values (the answers) are stored.
				The function’s return value is the number of the answer (in the case of a badly formulated question or a nonexistent name, the value will be 0).
			
REQUEST ("Name_of_program", "", program_name)
Returns in the given variable the name of the program, e. g., "ArchiCAD", etc.
Example 1:
Printing the name of the program
n=REQUEST ("Name_of_program", "", program_name)
PRINT program_name

REQUEST ("Name_of_macro", "", my_name)
REQUEST ("Name_of_main", "", main_name)

				After executing these function calls, the my_name variable will contain the name of the macro,
				while main_name will contain the name of the main macro (if it doesn’t exist, empty string).
			
REQUEST ("ID_of_main", "", id_string)

				For library parts placed on the floor plan,
				returns the identifier set in the tool’s settings dialog box in the id_string variable (otherwise empty string).
			
REQUEST ("Name_of_plan", "", name)
Returns in the given variable the name of the current project.
REQUEST ("Story", "", index, story_name)
Returns in the index and story_name variables the index and the name of the current story.
REQUEST ("Home_story", "", index, story_name)
Returns in the index and story_name variables the index and the name of the home story.
REQUEST ("Home_story_of_opening", "", index, story_name)

				Returns the index and the name of the home story of the opening in the index and story_name variables.
				The home story is the first story, where the opening is visible.
				Can be used in scripts of doors, windows, wallends, corner windows and skylights, and in the script of their labels and markers.
			
REQUEST ("Story_info", expr, nStories,
 index1, name1, elev1, height1 [,
 index2, name2, ...])

				Returns the story information in the given variables: number of stories and story index, name, elevation, height to next successively.
				If expr is a numerical expression, it means a story index: only the number of stories and the information on the specified story is returned.
				If expr is a string expression, it means that information on all stories is requested.
				The return value of the function is the number of successfully retrieved values.
			
Example 2:

DIM t[]
n = REQUEST ("STORY_INFO", "", nr, t)
FOR i = 1 TO nr
 nr = STR ("%.0m", t [4 * (i - 1) + 1])
 name = t [4 * (i - 1) + 2]
 elevation = STR ("%m", t [4 * (i - 1) + 3])
 height = STR ("%m", t [4 * (i - 1) + 4])
 TEXT2 0, -i, nr + "," + name + "," + elevation + "," + height
NEXT i

REQUEST ("Linear_dimension", "", format_string)
REQUEST ("Angular_dimension", "", format_string)
REQUEST ("Angular_length_dimension", "" format_string)
REQUEST ("Radial_dimension", "", format_string)
REQUEST ("Level_dimension", "", format_string)
REQUEST ("Elevation_dimension", "", format_string)
REQUEST ("Window_door_dimension", "", format_string)
REQUEST ("Sill_height_dimension", "", format_string)
REQUEST ("Area_dimension", "" format_string)
REQUEST ("Calc_length_unit", "", format_string)
REQUEST ("Calc_area_unit", "", format_string)
REQUEST ("Calc_volume_unit", "", format_string)
REQUEST ("Calc_angle_unit", "",format_string)

				With these requests, you can learn the dimension formats set in the Options/Preferences/Dimensions and Calculation Units dialog boxes.
				These requests return a format string that can be used as the first parameter in the STR () function.
			
Example 3:

format = "" num = 60.55
REQUEST ("Angular_dimension", "",format)!"%.2dd"
TEXT2 0, 0, STR (format, num)!60.55

REQUEST ("Clean_intersections", "", state)
Returns the state of the Clean Wall & Beam Intersections feature (1 when turned on, 0 when off)
REQUEST ("Zone_category", "", name, code)
For zones, returns the name and the code string of the current zone category.
REQUEST ("Zone_relations", "",
 category_name, code, name, number
 [, category_name2, code2, name2, number2])

				Returns in the given variables the zone category name and code and the name and number of the zone
				where the library part containing this request is located. For doors and windows, there can be a maximum of two zones.
				The return value of the request is the number of successfully retrieved values (0 if the library part is not inside any zone).
			
REQUEST ("Zone_relations_of_owner", "",
 category_name, code, name, number
 [, category_name2, code2, name2, number2])

				Returns in the given variables the category name & code and the zone name & number of the zone
				where the owner of the object is located. So, it is meaningful, if the library part has owner (door-window labels and door-window markers, etc.).
				In case of a door label, its owner is the door. For doors and windows, there can be a maximum of two related zones.
				The return value of the request is the number of successfully retrieved values
				(0 if the object has no owner, or its owner is not inside any zone).
			
REQUEST ("Zone_colus_area", "", area)
Returns in the area variable the total area of the columns placed in the current zone. Effective only for Zone Stamps.
 Available only for compatibility reasons. It is recommended to use quantities set by ArchiCAD in Zone Stamp fix parameters.
REQUEST ("Custom_auto_label", "", name)
Returns in the name variable the name of the custom auto label of the library part or an empty string if it does not exist.
REQUEST ("Rgb_of_material", name, r, g, b)
REQUEST ("Rgb_of_pen", penindex, r, g, b)
REQUEST ("Pen_of_RGB", "r g b", penindex)

				Like the REQ() function (but in just one call),
				returns in the specified variables the value of the r, g, b components of the material and pen,
				or the index of the pen corresponding to the given RGB values.
			
REQUEST ("Height_of_style", name, height [, descent, leading])

				Returns in the given variables the total height of the style measured in millimeters (height in meters is height / 1000 * GLOB_SCALE);
				the descent (the distance in millimeters from the text base line to the descent OEBPS/Images/general_windowrepr.png

OEBPS/Images/NonGeom_ui_ex1_rect.PNG
0.5000 ®
Helgnt of nole. o500 ®
Distance betwsen holss 02000 ®
Numbar of holes

Material of beam

Penofbeam

OEBPS/Images/3Dshapes_sweepgroup_ex.png

OEBPS/Images/3Dshapes_elbow_ex.png

OEBPS/Images/3Dshapes_sweep_ex1.png

OEBPS/Images/3Dshapes_tubea_ex1.png

OEBPS/Images/NonGeom_infield3_method5_pushbuttonWithText.PNG

OEBPS/Images/3Dshapes_xwall_logs.png

OEBPS/Images/3Dshapes_GDL_solid.png

OEBPS/Images/3Dshapes_bprism_ex1.png

OEBPS/Images/3Dshapes_extrude_ex1.png

OEBPS/Images/3Dshapes_subgroup.png

OEBPS/Images/3Dshapes_brick.png

OEBPS/Images/DW_rect_curved_ex.png

OEBPS/Images/3Dshapes_pyramid_ex.png

OEBPS/Images/3Dshapes_cwall_.png
0[0 ore

OEBPS/Images/3Dshapes_croof_.png
,

e

s

OEBPS/Images/2Dshapes_line2.png
2. %2)

ol

OEBPS/Images/3Dshapes_ellips.png

OEBPS/Images/NonGeom_CustomDialog_inactive.png
=1

W ON 0

Parameters

Floor Plan
Section

Model

Listing and Labeling

OEBPS/Images/3Dshapes_elbow.png

OEBPS/Images/3Dshapes_addgroup.png

OEBPS/Images/DW_nonrect_curved_ex.png
T
—

3

OEBPS/Images/3Dshapes_picture_fillrect2.png

OEBPS/Images/Attributes_defineSymbolFill_params.png

OEBPS/Images/3Dshapes_poly.png

OEBPS/Images/3Dshapes_fprism_.png
HILheght 5 Langie
ickness. f

OEBPS/Images/3Dshapes_tube_ex3.png

OEBPS/Images/Attributes_defineFill_params1.png

OEBPS/Images/DW_rect_straight.png

OEBPS/Images/general_blocksmul.png

OEBPS/Images/3Dshapes_cutpoly_ex2.png
—

OEBPS/Images/general_deskelab.png
RL
0

OEBPS/Images/StatCod_prevPart.png

OEBPS/Images/Attributes_defineFilla_params2.png

OEBPS/Images/3Dshapes_coor.png

OEBPS/Images/3Dshapes_sweep_mask.png

OEBPS/Images/DW_rect_curved_sides.png
X X

OEBPS/Images/Attributes_radius_ex1.png

OEBPS/Images/Attributes_anchor.png

OEBPS/Images/GraphEd_hotspot2_ex4.png

OEBPS/Images/3Dshapes_cutshape_ex.png

OEBPS/Images/3Dshapes_arme.png

OEBPS/Images/2Dshapes_rect2.png
2. %)

I

OEBPS/Images/3Dshapes_revolve_ex3.png

OEBPS/Images/NonGeom_ui_ex1_circ.PNG
= Hole definition parameters
S— —®
s —
e —
pervoreres = -
P

Material of beam

Penofbeam

OEBPS/Images/cordtrans_blocksntr.png

OEBPS/Images/3Dshapes_light_cone1.png

OEBPS/Images/StatCod_lengthDirection.png
(200

OEBPS/Images/3Dshapes_ruled_2_ex2.png

OEBPS/Images/3Dshapes_poly_add_stat2.png

OEBPS/Images/StatCod_close.png

OEBPS/Images/StatCod_addStatCod_ex1_1.png

OEBPS/Images/3Dshapes_coons_mask.png

OEBPS/Images/DW_rect_curved_DWcurved.png

OEBPS/Images/3Dshapes_cutplane_ex4_1.png

OEBPS/Images/2Dshapes_poly2.png

OEBPS/Images/3Dshapes_ruledshell_ex.png

OEBPS/Images/3Dshapes_coons_ex2.png

OEBPS/Images/StatCod_centerPoint.png
Sox

OEBPS/Images/NonGeom_infield3_method6_pushButtonWithPicture.PNG
]

OEBPS/Images/3Dshapes_slab.png

OEBPS/Images/NonGeom_infield3_method3_popupIconRadioControl.PNG
R=EEIRY

OEBPS/Images/3Dshapes_prism_ex3.png
U

OEBPS/Images/NonGeom_CustomDialog_active.png
2080

=1

Parameters
Door, Knob, Sink and Tap Style
Floor Plan

Section

Model

Listing and Labeling

OEBPS/Images/NonGeom_infield3_method7_checkboxWithText.PNG
[orafting Fils
Caver Fils
Cut Fils

OEBPS/Images/3Dshapes_text_ex2.png

OEBPS/Images/3Dshapes_arc.png

OEBPS/Images/2Dshapes_poly2_.png

OEBPS/Images/ControlStat_buffer_get.png

OEBPS/Images/3Dshapes_sweep_ex2.png

OEBPS/Images/DW_nonrect_straight.png

OEBPS/Images/cordtrans_add.png

OEBPS/Images/Attributes_defineTexture_connectContj7.png

OEBPS/Images/3Dshapes_sweepgroup.png

OEBPS/Images/3Dshapes_picture_fillrect1.png

OEBPS/Images/3Dshapes_cwall_openings.png

OEBPS/Images/2Dshapes_project2_2_2.png

OEBPS/Images/ControlStat_buffer_use.png

OEBPS/Images/ControlStat_buffer_ex.png

OEBPS/Images/StatCod_tangArcRadAng.png
(2000

OEBPS/Images/GraphEd_hotspotAngle.png
Base(s)

OEBPS/Images/3Dshapes_cutplane_ex2_2.png

OEBPS/Images/3Dshapes_masking.png
oz

OEBPS/Images/Attributes_resol_ex1.png

OEBPS/Images/3Dshapes_cutpolya.png

OEBPS/Images/2Dshapes_project2_2_1.png

OEBPS/Images/3Dshapes_sprism_ex.png

OEBPS/Images/3Dshapes_mass_ex.png

OEBPS/Images/2Dshapes_arc2.png

OEBPS/Images/GraphEd_hotspot2_ex2_2.png

OEBPS/Images/StatCod_absEndpoint.png
S

OEBPS/Images/StatCod_tangent.png

OEBPS/Images/3Dshapes_light.png
as2

OEBPS/Images/Attributes_defineFill_ex2.png

OEBPS/Images/3Dshapes_cutplane_ex2_1.png

OEBPS/Images/3Dshapes_mesh_ex2.png

OEBPS/Images/3Dshapes_croof_ex2.png

OEBPS/Images/3Dshapes_xwall_2_ex.png

OEBPS/Images/2Dshapes_circle2.png

OEBPS/Images/ExpFunct_stw.png
abed

OEBPS/Images/3Dshapes_tube_ex2.png

OEBPS/Images/3Dshapes_cutpoly_ex1.png

OEBPS/Images/3Dshapes_poly_add_stat1.png

OEBPS/Images/3Dshapes_cutplane_ex3_2.png

OEBPS/Images/3Dshapes_light_cone2.png

OEBPS/Images/3Dshapes_beam_ex.png

OEBPS/Images/3Dshapes_revolve_ex2.png

OEBPS/Images/2Dshapes_spline2_ex1.png

OEBPS/Images/3Dshapes_tubea.png
_ bissctor plane.

OEBPS/Images/Attributes_defineFilla_params1.png

OEBPS/Images/3Dshapes_prism_ex2.png

OEBPS/Images/3Dshapes_polyroofMaterials.png

OEBPS/Images/3Dshapes_pyramid.png

OEBPS/Images/GraphEd_hotspotLength.png
Feference (3) Base (1) Moving @)

OEBPS/Images/2Dshapes_spline2.png

OEBPS/Images/3Dshapes_revolve_ex1.png

OEBPS/Images/cordtrans_rot2.png

OEBPS/Images/3Dshapes_sphere.png

OEBPS/Images/3Dshapes_cutplane_ex4_2.png

OEBPS/Images/cordtrans_blockxform.png
[ZT7

OEBPS/Images/3Dshapes_ruled_2.png

OEBPS/Images/3Dshapes_bprism_ex3.png

OEBPS/Images/3Dshapes_arme_ex1.png

OEBPS/Images/NonGeom_infield3_method4_pushIconRadioControl.PNG
18 A &

OEBPS/Images/NonGeom_infield3_method8_popupListWithText.PNG
1100

[0

hiao0

a0
atom

OEBPS/Images/Attributes_toler_ex1.png

OEBPS/Images/3Dshapes_prism_ex4.png

OEBPS/Images/Attributes_defineFilla_ex2.png
Jaddad
R
Saddad
T
Jadaad
T
Jaddad
R
Jaddad
T
Saaaad
o

OEBPS/Images/StatCod_startPoint.png
Ty 00

OEBPS/Images/StatCod_addStatCod_ex4.png

OEBPS/Images/3Dshapes_bwall_ex1_2.png

OEBPS/Images/3Dshapes_bwall_ex2.png

OEBPS/Images/3Dshapes_group_ex.png

OEBPS/Images/NonGeom_uiRadiobutton.PNG
@Floor plan
Ociing Pl

OEBPS/Images/2Dshapes_text2.png
AschiCAD

OEBPS/Images/Attributes_defineTexture_connectContj8.png

OEBPS/Images/general_